zoukankan      html  css  js  c++  java
  • noip 2016 天天爱跑步

    描述

    小C同学认为跑步非常有趣,于是决定制作一款叫做《天天爱跑步》的游戏。《天天爱跑步》是一个养成类游戏,需要玩家每天按时上线,完成打卡任务。

    这个游戏的地图可以看作一棵包含n个结点和n - 1条边的树,每条边连接两个结点,且任意两个结点存在一条路径互相可达。树上结点编号为从1到n的连续正整数。

    现在有m个玩家,第i个玩家的起点为Si,终点为Ti。每天打卡任务开始时,所有玩家 在第0秒 同时从 自己的起点 出发,以 每秒跑一条边 的速度,不间断地沿着最短路径向着 自己的终点 跑去,跑到终点后该玩家就算完成了打卡任务。(由于地图是一棵树,所以每个人的路径是唯一的)

    小C想知道游戏的活跃度,所以在每个结点上都放置了一个观察员。在结点j的观察员会选择在第Wj秒观察玩家,一个玩家能被这个观察员观察到当且仅当该玩家在第Wj秒也 正好 到达了结点j。小C想知道每个观察员会观察到多少人?

    注意: 我们认为一个玩家到达自己的终点后该玩家就会结束游戏,他不能等待一段时间后再被观察员观察到。即对于把结点j作为终点的玩家:若他在第Wj秒前到达 终点,则在结点j的观察员 不能观察到 该玩家;若他 正好 在第Wj秒到达终点,则在结点j的观察员 可以观察到 这个玩家。

    格式

    输入格式

    第一行有两个整数n和m。其中n代表树的结点数量,同时也是观察员的数量, m代表玩家的数量。

    接下来n - 1行每行两个整数u和v,表示结点u到结点v有一条边。

    接下来一行n个整数,其中第j个整数为Wj,表示结点j出现观察员的时间。 接下来m行,每行两个整数Si和Ti,表示一个玩家的起点和终点。

    对于所有的数据,保证1 <= Si, Ti <= n,0 <= Wj <= n。

    输出格式

    输出1行n个整数,第j个整数表示结点j的观察员可以观察到多少人。

    样例1

    样例输入1

    6 3
    2 3
    1 2
    1 4
    4 5
    4 6
    0 2 5 1 2 3
    1 5
    1 3
    2 6
    

    样例输出1

    2 0 0 1 1 1
    

    样例2

    样例输入2

    5 3
    1 2
    2 3
    2 4
    1 5
    0 1 0 3 0
    3 1
    1 4
    5 5
    

    样例输出2

    1 2 1 0 1
    

    限制

    每个测试点时限2秒。

    【子任务】

    每个测试点的数据规模及特点如下表所示。提示:数据范围的个位上的数字可以帮助判断是哪一种数据类型。

    图片

    提示

    【样例1说明】

    对于1号点,W1=0,故只有起点为1号点的玩家才会被观察到,所以玩家1和玩家2被观察到,共2人被观察到。

    对于2号点,没有玩家在第2秒时在此结点,共0人被观察到。

    对于3号点,没有玩家在第5秒时在此结点,共0人被观察到。

    对于4号点,玩家1被观察到,共1人被观察到。

    对于5号点,玩家2被观察到,共1人被观察到。

    对于6号点,玩家3被观察到,共1人被观察到。

    来源

    NOIP 2016 提高组 Day 1 第二题

    —————————————————————————

    这道题我写的 O(n)的扫描线 但是预处理要 nlogn QAQ

    其实可以写成 O(n)但是有点复杂就没写

    我们把修改(就是走来走去的玩家)拆成四个修改

    就是类似差分的方法 

    一个修改从 从u开始到v结束

    我们就拆成四份 在u处+ v处+ (u和v的)lca处- lca的父亲处-

    这样就实现了在u和v的路径上加的操作 画个图感受一下吧

     

    其余类似辣 一共四种情况自己画一下就好了 

    然后我们考虑一个修改对某个点答案的影响 分两类

    第一类是从下往上经过一个点的

     

    观察可知 S+dis【s】【q】(s q的距离)==w【q】(观察的时间)

    满足上一条件那么ans【q】就会被影响

    当然因为做扫描线我们需要把形式转换为只和询问和修改有关

    又 dis【s】【q】=d【s】-d【q】(d表示深度)

    即S+d【s】=w【q】+d【q】

    第二类为从上往下经过一个点的情况

    同理 满足的条件为 T-d【T】【q】==w【q】

    转换为 T-d【T】=w【q】-d【q】

    当然因为形式不同 所以要分开存 最后合起来就好了(开两个桶)

    这样之后我们就找到了询问和修改的关系了

    然后我们发现对一个点有影响的修改当且仅当修改在他的子树内

    这样我们可以做一次dfs dfs到一个点的时候记录一波ans1

    回溯到一个点说明关于他的修改已经全部加上了

    这个时候再记录一波ans2 那么这个点的答案就是ans2-ans1

    这样就实现了询问的拆分了 这样这个问题就解决了 代码其实很短 

    但是细节较多 

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<vector>
    const int M=5e5+7;
    int read(){
        int ans=0,f=1,c=getchar();
        while(c<'0'||c>'9'){if(c=='-') f=-1; c=getchar();}
        while(c>='0'&&c<='9'){ans=ans*10+(c-'0'); c=getchar();}
        return ans*f;
    }
    int n,m;
    int first[M],cnt;
    struct node{int to,next;}e[2*M];
    void ins(int a,int b){e[++cnt]=(node){b,first[a]}; first[a]=cnt;}
    void insert(int a,int b){ins(a,b); ins(b,a);}
    int w[M];
    int dep[M],f[M][25];
    void dfs(int x){
        for(int i=1;(1<<i)<=dep[x];i++) f[x][i]=f[f[x][i-1]][i-1];
        for(int i=first[x];i;i=e[i].next){
            int now=e[i].to;
            if(!dep[now]){
                dep[now]=dep[x]+1;
                f[now][0]=x;
                dfs(now);
            }
        }
    }
    int find(int x,int y){
        if(dep[x]<dep[y]) std::swap(x,y);
        int d=dep[x]-dep[y];
        for(int i=0;(1<<i)<=d;i++) if(1<<i&d) x=f[x][i];
        if(x==y) return x;
        for(int i=20;i>=0;i--) 
            if(f[x][i]!=f[y][i]) x=f[x][i],y=f[y][i];
        return f[x][0];
    }
    struct pos{int x,s;};
    std::vector<pos>e1[M],e2[M];
    int ans1[2*M],ans2[2*M],ans[M];
    void pans(int x){
        ans[x]-=ans1[w[x]+dep[x]];
        ans[x]-=ans2[w[x]-dep[x]+n];
        pos*p=e1[x].data();
        for(int i=0;i<e1[x].size();i++) ans1[p[i].x]+=p[i].s;
        p=e2[x].data();
        for(int i=0;i<e2[x].size();i++) ans2[p[i].x+n]+=p[i].s;
        for(int i=first[x];i;i=e[i].next){
            int now=e[i].to;
            if(f[x][0]==now) continue;
            pans(now);
        }
        ans[x]+=ans1[w[x]+dep[x]];
        ans[x]+=ans2[w[x]-dep[x]+n];
    }
    int main(){
        int x,y;
        n=read(); m=read(); 
        for(int i=1;i<n;i++) x=read(),y=read(),insert(x,y);
        for(int i=1;i<=n;i++) w[i]=read();
        dep[1]=1; dfs(1);
        for(int i=1;i<=m;i++){
            x=read(); y=read();
            int lca=find(x,y),fa=f[lca][0];
            e1[x].push_back((pos){dep[x],1});
            e1[lca].push_back((pos){dep[x],-1});
            e2[y].push_back((pos){dep[x]-2*dep[lca],1});
            e2[fa].push_back((pos){dep[x]-2*dep[lca],-1});
        }
        pans(1);
        for(int i=1;i<=n;i++) printf("%d ",ans[i]); printf("
    ");
        return 0;
    }
    View Code
  • 相关阅读:
    实现 (5).add(3).minus(2) 功能
    vue兄弟组件传值的三种方法
    Web渗透测试思路整理
    PHP代码审计基础
    简单易用,用Powershell劫持Windows系统快捷键
    javascript脚本混淆
    秒杀系统架构优化思路
    什么是OOP
    一分钟了解负载均衡的一切
    MVC
  • 原文地址:https://www.cnblogs.com/lyzuikeai/p/7451757.html
Copyright © 2011-2022 走看看