zoukankan      html  css  js  c++  java
  • [LeetCode 1420] Build Array Where You Can Find The Maximum Exactly K Comparisons

    Given three integers nm and k. Consider the following algorithm to find the maximum element of an array of positive integers:

    You should build the array arr which has the following properties:

    • arr has exactly n integers.
    • 1 <= arr[i] <= m where (0 <= i < n).
    • After applying the mentioned algorithm to arr, the value search_cost is equal to k.

    Return the number of ways to build the array arr under the mentioned conditions. As the answer may grow large, the answer must be computed modulo 10^9 + 7.

     

    Example 1:

    Input: n = 2, m = 3, k = 1
    Output: 6
    Explanation: The possible arrays are [1, 1], [2, 1], [2, 2], [3, 1], [3, 2] [3, 3]
    

    Example 2:

    Input: n = 5, m = 2, k = 3
    Output: 0
    Explanation: There are no possible arrays that satisify the mentioned conditions.
    

    Example 3:

    Input: n = 9, m = 1, k = 1
    Output: 1
    Explanation: The only possible array is [1, 1, 1, 1, 1, 1, 1, 1, 1]
    

    Example 4:

    Input: n = 50, m = 100, k = 25
    Output: 34549172
    Explanation: Don't forget to compute the answer modulo 1000000007
    

    Example 5:

    Input: n = 37, m = 17, k = 7
    Output: 418930126
    

     

    Constraints:

    • 1 <= n <= 50
    • 1 <= m <= 100
    • 0 <= k <= n

    O(N * K * M^2) dynamic programming

    State:

    dp[i][j][maxV]: the number of ways to build an array of arr[0, i] (length i + 1), with j search costs and max number of maxV. 

    Transition:

    1. if the current value V is not a new max number, then V must be in range [1, maxV], otherwise V will be a new max number. So the current number has maxV different choices, each choice corresponds to the number of ways of shorter length by 1, same search cost and max number, dp[i - 1][j][maxV]. So dp[i][j][maxV] += dp[i - 1][j][maxV] * maxV;  

    2. if the current value V is a new max number, then V only has one option, maxV. We can append maxV to all arrays of shorter length by 1, smaller search cost by 1 and max value smaller than maxV to get array of longer length by 1, bigger search cost by 1 and max number maxV. So dp[i][j][maxV] = Sum of (dp[i - 1][j - 1][smallerV]), smallerV in [1, maxV - 1].

    Init:

    For array of 1 element, there is 1 way for each different number choice with a search cost of 1. This is true because maximum value is initially set to < 0, so any number choice will incur an update.  dp[0][1][maxV] = 1, maxV in [1, m].

    Answer: Sum of dp[n - 1][k][maxV], maxV in [1, m]. For each valid array, its max value must be in [1, m], so the final answer is the sum over all max value possibilities for length n and search cost k.

    class Solution {
        public int numOfArrays(int n, int m, int k) {
            int mod = (int)1e9 + 7;
            long[][][] dp = new long[n][k + 1][m + 1];
            for(int maxV = 1; maxV <= m; maxV++) {
                dp[0][1][maxV] = 1;
            }
            for(int i = 1; i < n; i++) {
                for(int j = 1; j <= k; j++) {
                    for(int maxV = 1; maxV <= m; maxV++) {
                        //newly added number is not a new max value
                        dp[i][j][maxV] = (dp[i][j][maxV] + dp[i - 1][j][maxV] * maxV) % mod;
                        //newly added number is a new max value
                        for(int smallerV = 1; smallerV < maxV; smallerV++) {
                            dp[i][j][maxV] = (dp[i][j][maxV] + dp[i - 1][j - 1][smallerV]) % mod;
                        }
                    }
                }
            }
            long ans = 0;
            for(int v = 1; v <= m; v++) {
                ans = (ans + dp[n - 1][k][v]) % mod;
            }
            return (int)ans;
        }
    }

    The for loop to for case: newly added number is a new max value does redundant work as it sums up the same prefixes dp[i - 1][j - 1][smallerV] repeatly. To optimize this, we can create a prefix sum array to save the previous summation results. This reduces the runtime of computing newly added number is a new max value case from O(M) to O(1). 

    class Solution {
        public int numOfArrays(int n, int m, int k) {
            int mod = (int)1e9 + 7;
            long[][][] dp = new long[n][k + 1][m + 1];
            long[][][] ps = new long[n][k + 1][m + 1];
            for(int maxV = 1; maxV <= m; maxV++) {
                dp[0][1][maxV] = 1;
                ps[0][1][maxV] = ps[0][1][maxV - 1] + 1;
            }
            for(int i = 1; i < n; i++) {
                for(int j = 1; j <= k; j++) {
                    for(int maxV = 1; maxV <= m; maxV++) {
                        //newly added number is not a new max value
                        dp[i][j][maxV] = (dp[i][j][maxV] + dp[i - 1][j][maxV] * maxV) % mod;
                        //newly added number is a new max value
                        dp[i][j][maxV] = (dp[i][j][maxV] + ps[i - 1][j - 1][maxV - 1]) % mod;
                        ps[i][j][maxV] = (ps[i][j][maxV - 1] + dp[i][j][maxV]) % mod;
                    }
                }
            }
            long ans = 0;
            for(int v = 1; v <= m; v++) {
                ans = (ans + dp[n - 1][k][v]) % mod;
            }
            return (int)ans;
        }
    }
  • 相关阅读:
    Springboot 之 自定义配置文件及读取配置文件
    SQLSERVER系统视图 sql server系统表详细说明
    MySQL Workbench建表时 PK NN UQ BIN UN ZF AI 的含义
    使用Ecplise git commit时出现"There are no stages files"
    maven添加sqlserver的jdbc驱动包
    java将XML文档转换成json格式数据
    java将XML文档转换成json格式数据
    cannot be resolved. It is indirectly referenced from required .class files
    org.codehaus.jackson.map.JsonMappingException: Can not construct instance of java.util.Date from String value '2012-12-12 12:01:01': not a valid representation (error: Can not parse date "2012-12-
    @Autowired注解和静态方法 NoClassDefFoundError could not initialize class 静态类
  • 原文地址:https://www.cnblogs.com/lz87/p/12742029.html
Copyright © 2011-2022 走看看