zoukankan      html  css  js  c++  java
  • [LeetCode 1712] Ways to Split Array Into Three Subarrays

    A split of an integer array is good if:

    • The array is split into three non-empty contiguous subarrays - named leftmidright respectively from left to right.
    • The sum of the elements in left is less than or equal to the sum of the elements in mid, and the sum of the elements in mid is less than or equal to the sum of the elements in right.

    Given nums, an array of non-negative integers, return the number of good ways to split nums. As the number may be too large, return it modulo 109 + 7.

     

    Example 1:

    Input: nums = [1,1,1]
    Output: 1
    Explanation: The only good way to split nums is [1] [1] [1].

    Example 2:

    Input: nums = [1,2,2,2,5,0]
    Output: 3
    Explanation: There are three good ways of splitting nums:
    [1] [2] [2,2,5,0]
    [1] [2,2] [2,5,0]
    [1,2] [2,2] [5,0]
    

    Example 3:

    Input: nums = [3,2,1]
    Output: 0
    Explanation: There is no good way to split nums.

     

    Constraints:

    • 3 <= nums.length <= 10^5
    • 0 <= nums[i] <= 10^4

    Since we need to compute subarray sum, so we should get the prefix sum array ps. Notice that nums[i] is nonnegative, so ps is non-decreasing. Using ps we can either do a linear scan with binary search, or just a linear scan.

    Solution 1. O(N*logN), fix the start index of the 3rd subarray and binary search the leftmost and rightmost end index of the 1st subarray.

    class Solution {
        public int waysToSplit(int[] nums) {
            int n = nums.length, mod = (int)1e9 + 7, ans = 0;
            int[] ps = new int[n];
            ps[0] = nums[0];
            for(int i = 1; i < n; i++) {
                ps[i] = ps[i - 1] + nums[i];
            }
            //fix the 3rd partition [i, n - 1], its sum * 3 >= total sum
            for(int i = 2; i < n; i++) {
                if((ps[n - 1] - ps[i - 1]) * 3 < ps[n - 1]) {
                    break;
                }
                int l = bs1(ps, i - 1, ps[n - 1] - ps[i - 1]);
                int r = bs2(ps, i - 1, ps[n - 1] - ps[i - 1]);
                if(l >= 0 && r >= 0) {
                    ans = (ans + r - l + 1) % mod;
                }
            }
            return ans;
        }
        //return the left most index i such that S(nums[0, i]) <= S(nums[i + 1, rightBound]) <= S(nums[rightBound + 1, n - 1])
        private int bs1(int[] ps, int rightBound, int third) {
            int l = 0, r = rightBound - 1;
            while(l < r - 1) {
                int mid = l + (r - l) / 2;
                if(ps[mid] <= ps[rightBound] - ps[mid] && ps[rightBound] - ps[mid] <= third) {
                    r = mid;
                }
                //1st is too big, need to keep searching on the left half
                else if(ps[mid] > ps[rightBound] - ps[mid]) {
                    r = mid - 1;
                }
                else {
                    l = mid + 1;
                }
            }
            if(ps[l] <= ps[rightBound] - ps[l] && ps[rightBound] - ps[l] <= third) {
                return l;
            }
            else if(ps[r] <= ps[rightBound] - ps[r] && ps[rightBound] - ps[r] <= third) {
                return r;
            }
            return -1;
        }
        //return the right most index i such that S(nums[0, i]) <= S(nums[i + 1, rightBound]) <= S(nums[rightBound + 1, n - 1])
        private int bs2(int[] ps, int rightBound, int third) {
            int l = 0, r = rightBound - 1;
            while(l < r - 1) {
                int mid = l + (r - l) / 2;
                if(ps[mid] <= ps[rightBound] - ps[mid] && ps[rightBound] - ps[mid] <= third) {
                    l = mid;
                }
                else if(ps[mid] > ps[rightBound] - ps[mid]){
                    r = mid - 1;
                }
                else {
                    l = mid + 1;
                }
            }
            
            if(ps[r] <= ps[rightBound] - ps[r] && ps[rightBound] - ps[r] <= third) {
                return r;
            }
            else if(ps[l] <= ps[rightBound] - ps[l] && ps[rightBound] - ps[l] <= third) {
                return l;
            }
            return -1;        
        }
    }

    Solution 2. O(N) fix the end index of the 1st subarray i and find the leftmost and rightmost end index of the 2nd subarray, call them j and k. We actually do not need binary search because as i goes from left to right, the sum of the 1st subarray increases. This means j and k can only either stay the same or increase in each iteration. 

    class Solution {
        public int waysToSplit(int[] nums) {
            int n = nums.length, ans = 0;
            for (int i = 1; i < n; ++i)
                nums[i] += nums[i - 1];
            for (int i = 0, j = 0, k = 0; i < n - 2; ++i) {
                while (j <= i || (j < n - 1 && nums[j] < nums[i] * 2))
                    j++;
                while (k < j || ( k < n - 1 && nums[k] - nums[i] <= nums[n - 1] - nums[k]))
                    k++;
                ans = (ans + k - j) % 1000000007;
            }    
            return ans;
        }    
    }
     
     
  • 相关阅读:
    ES6中的let关键字,有什么用呢?
    ES6系列-什么是ES6?新手应该怎么理解
    css的变量教程,更强大的css
    尤雨溪在直播中讲到的Vue3.0 Beta的那些特性,快记笔记了
    前端基础进阶(七)-前端工程师最容易出错的问题-this关键字
    前端基础进阶(六)-大厂面试题问题:循环闭包与setTimeout
    JavaScript 中 this的指向
    What happens to our code? JavaScript 代码是怎样执行的
    Truthy and Falsy Values and Equality Operators
    iDisposable
  • 原文地址:https://www.cnblogs.com/lz87/p/14270165.html
Copyright © 2011-2022 走看看