zoukankan      html  css  js  c++  java
  • [LeetCode] 337. House Robber III

    The thief has found himself a new place for his thievery again. There is only one entrance to this area, called the "root." Besides the root, each house has one and only one parent house. After a tour, the smart thief realized that "all houses in this place forms a binary tree". It will automatically contact the police if two directly-linked houses were broken into on the same night.

    Determine the maximum amount of money the thief can rob tonight without alerting the police.

     

    Example

      3
     / 
    2   3
         
      3   1
    

    Maximum amount of money the thief can rob = 3 + 3 + 1 = 7.

        3
       / 
      4   5
     /     
    1   3   1
    

    Maximum amount of money the thief can rob = 4 + 5 = 9.

     

    Unlike House Robber I && II,  this problem does not have a linear structure. Since it has a binary tree 

    in this problem, we should naturally think about solving the subproblems recursively before solving the

    original problem. 

     

    Optimal substructure:

    f(node) = Math.max(node.val + f(node.left.left) + f(node.left.right) + f(node.right.left) + f(node.right.right),  //choose node

              f(node.left) + f(node.right));  //not choose node

    With this formula, we have the following TLE solution.

    Why TLE? Think about BUD(bottlenecks, unnecessary work, duplicated work)

    To calculate f(node), we need to calculate f(node.left), f(node.right), f(node.left.left), f(node.left.right), f(node.right.left), f(node.right.right);

    To calculate f(node.left), we'll calculate f(node.left.left) and f(node.left.right) again; This duplication pattern applies to each node.

    So we have the overlapping subproblem issue.

     1 public class Solution {
     2     public int houseRobber3(TreeNode root) {
     3         if(root == null){
     4             return 0;
     5         }
     6         int val = 0;
     7         if(root.left != null){
     8             val += houseRobber3(root.left.left) + houseRobber3(root.left.right);
     9         }
    10         if(root.right != null){
    11             val += houseRobber3(root.right.left) + houseRobber3(root.right.right);
    12         }
    13         return Math.max(root.val + val, houseRobber3(root.left) + houseRobber3(root.right));
    14     }
    15 }

     

    To avoid duplicated calculations, we apply the memoization search concept.  For each node, we save the intermediate result

    with choosing the current node and without choosing the current node.

    Essentially this solution applies the dynamic programming principle. We use the top-down memoization search since the it 

    is hard to find a proper init state and recurring bottom up is difficult for binary tree. The natural access fashion for any tree

    structure is top down.

     1 /**
     2  * Definition of TreeNode:
     3  * public class TreeNode {
     4  *     public int val;
     5  *     public TreeNode left, right;
     6  *     public TreeNode(int x) { val = x; }
     7  * }
     8  */
     9 public class Solution {
    10     private class ResultType{
    11         int maxWithCurrNode;
    12         int maxWithoutCurrNode;
    13         ResultType(int v1, int v2){
    14             maxWithCurrNode = v1;
    15             maxWithoutCurrNode = v2;
    16         }
    17     }
    18     public int houseRobber3(TreeNode root) {
    19         ResultType result = dfs(root);
    20         return Math.max(result.maxWithCurrNode, result.maxWithoutCurrNode);
    21     }
    22     private ResultType dfs(TreeNode node){
    23         if(node == null){
    24             return new ResultType(0, 0);
    25         }
    26         ResultType left = dfs(node.left);
    27         ResultType right = dfs(node.right);
    28         ResultType curr = new ResultType(0, 0);
    29         curr.maxWithCurrNode = left.maxWithoutCurrNode + right.maxWithoutCurrNode + node.val;
    30         curr.maxWithoutCurrNode = Math.max(left.maxWithoutCurrNode, left.maxWithCurrNode)
    31                                 + Math.max(right.maxWithoutCurrNode, right.maxWithCurrNode);
    32         return curr;
    33     }
    34 }

     

     

    Related Problems

    Binary Tree Maximum Path Sum

  • 相关阅读:
    【Java】这个案例帮你搞懂Date类型
    MySQL学习笔记十一:触发器
    MySQL学习笔记十:游标/动态SQL/临时表/事务
    MySQL学习笔记九:索引
    MySQL学习笔记八:存储过程与自定义函数
    MySQL学习笔记七:常用函数
    MySQL学习笔记六:表的创建及管理
    MySQL学习笔记五:数据类型
    MySQL学习笔记四:数据库创建与常见操作
    MySQL学习笔记三:MySQL5.7安装后期设置
  • 原文地址:https://www.cnblogs.com/lz87/p/6955071.html
Copyright © 2011-2022 走看看