zoukankan      html  css  js  c++  java
  • [LintCode] Maximal Square II

    Given a 2D binary matrix filled with 0's and 1's, find the largest square which diagonal is all 1 and others is 0.

    Only consider the main diagonal situation.
    Example

    For example, given the following matrix:

    1 0 1 0 0
    1 0 0 1 0
    1 1 0 0 1
    1 0 0 1 0
    

    Return 9

    Similiarly with Maximal Square, we can check each entry of 1 from scratch and get the max length of a square whose diagonal is all 1 and others are 0.

    Again, this straightforward solution suffers the same NOT using previous check results to expediate our algorithm's runtime.

    So we jump directly into the dynamic programming solution. 

    State: dp[i][j]: the max length of a square with only diagonal 1s whose bottom right corner is matrix[i][j]. 

    Function: dp[i][j] = 0, if matrix[i][j] == 0;

         dp[i][j] = 1 + min {leftZeros[i][j], upZeros[i][j], dp[i - 1][j - 1]}, if matrix[i][j] == 1;

    Similarly with Maxmial Square, when matrix[i][j] is 1, we also need to check its left, top, top left side.

    leftZeros[i][j] is the max number of consecutive 0s to the left of matrix[i][j];

    upZeros[i][j] is the max number of consecutive 0s to the top of matrix[i][j];

    These two along with dp[i - 1][j - 1] decides the max length of a sqaure with only diagonal 1s whose bottom right corner is matrix[i][j]. 

     1 public class Solution {
     2     public int maxSquare2(int[][] matrix) {
     3         if(matrix == null || matrix.length == 0 || matrix[0].length == 0){
     4             return 0;
     5         }
     6         int n = matrix.length; int m = matrix[0].length;
     7         int[][] leftZeros = new int[n][m];
     8         int[][] upZeros = new int[n][m];
     9         for(int i = 0; i < n; i++){
    10             leftZeros[i][0] = 0;
    11         }
    12         for(int j = 0; j < m; j++){
    13             upZeros[0][j] = 0;
    14         }
    15         for(int i = 0; i < n; i++){
    16             for(int j = 1; j < m; j++){
    17                 if(matrix[i][j - 1] == 0){
    18                     leftZeros[i][j] = leftZeros[i][j - 1] + 1;
    19                 }    
    20                 else{
    21                     leftZeros[i][j] = 0;
    22                 }
    23             }
    24         }
    25         for(int i = 1; i < n; i ++){
    26             for(int j = 0; j < m; j++){
    27                 if(matrix[i - 1][j] == 0){
    28                     upZeros[i][j] = upZeros[i - 1][j] + 1;
    29                 }
    30                 else{
    31                     upZeros[i][j] = 0;
    32                 }                
    33             }
    34         }
    35         int[][] dp = new int[n][m];
    36         for(int i = 0; i < n; i++){
    37             dp[i][0] = matrix[i][0];    
    38         }
    39         for(int j = 0; j < m; j++){
    40             dp[0][j] = matrix[0][j];
    41         }
    42         for(int i = 1; i < n; i++){
    43             for(int j = 1; j < m; j++){
    44                 if(matrix[i][j] == 0){
    45                     dp[i][j] = 0;
    46                 }
    47                 else{
    48                     dp[i][j] = Math.min(Math.min(leftZeros[i][j], upZeros[i][j]), dp[i - 1][j - 1]) + 1;
    49                 }
    50             }
    51         }
    52         int max = 0;
    53         for(int i = 0; i < n; i++){
    54             for(int j = 0; j < m; j++){
    55                 max = Math.max(max, dp[i][j]);    
    56             }
    57         }
    58         return max * max;
    59     }
    60 }

    Related Problems

    Maximal Square

    Maximum Subsquare surrounded by 'X'

  • 相关阅读:
    OOP侧边分享按钮
    表格基础操作
    行为型模式之自定义语言的实现(解释器模式)
    行为型模式之请求发送者与接收者解耦(命令模式)
    行为型模式之请求的链式处理(职责链模式)
    Http、Socket、WebSocket之间联系与区别
    日期时间工具类DateTimeUtil(基于Java8的LocalDateTime)
    结构型模式之代理模式
    Java8 函数式接口@FunctionalInterface的使用说明
    结构型模式之实现对象的复用(享元模式)
  • 原文地址:https://www.cnblogs.com/lz87/p/7393780.html
Copyright © 2011-2022 走看看