zoukankan      html  css  js  c++  java
  • [LintCode] Maximal Square II

    Given a 2D binary matrix filled with 0's and 1's, find the largest square which diagonal is all 1 and others is 0.

    Only consider the main diagonal situation.
    Example

    For example, given the following matrix:

    1 0 1 0 0
    1 0 0 1 0
    1 1 0 0 1
    1 0 0 1 0
    

    Return 9

    Similiarly with Maximal Square, we can check each entry of 1 from scratch and get the max length of a square whose diagonal is all 1 and others are 0.

    Again, this straightforward solution suffers the same NOT using previous check results to expediate our algorithm's runtime.

    So we jump directly into the dynamic programming solution. 

    State: dp[i][j]: the max length of a square with only diagonal 1s whose bottom right corner is matrix[i][j]. 

    Function: dp[i][j] = 0, if matrix[i][j] == 0;

         dp[i][j] = 1 + min {leftZeros[i][j], upZeros[i][j], dp[i - 1][j - 1]}, if matrix[i][j] == 1;

    Similarly with Maxmial Square, when matrix[i][j] is 1, we also need to check its left, top, top left side.

    leftZeros[i][j] is the max number of consecutive 0s to the left of matrix[i][j];

    upZeros[i][j] is the max number of consecutive 0s to the top of matrix[i][j];

    These two along with dp[i - 1][j - 1] decides the max length of a sqaure with only diagonal 1s whose bottom right corner is matrix[i][j]. 

     1 public class Solution {
     2     public int maxSquare2(int[][] matrix) {
     3         if(matrix == null || matrix.length == 0 || matrix[0].length == 0){
     4             return 0;
     5         }
     6         int n = matrix.length; int m = matrix[0].length;
     7         int[][] leftZeros = new int[n][m];
     8         int[][] upZeros = new int[n][m];
     9         for(int i = 0; i < n; i++){
    10             leftZeros[i][0] = 0;
    11         }
    12         for(int j = 0; j < m; j++){
    13             upZeros[0][j] = 0;
    14         }
    15         for(int i = 0; i < n; i++){
    16             for(int j = 1; j < m; j++){
    17                 if(matrix[i][j - 1] == 0){
    18                     leftZeros[i][j] = leftZeros[i][j - 1] + 1;
    19                 }    
    20                 else{
    21                     leftZeros[i][j] = 0;
    22                 }
    23             }
    24         }
    25         for(int i = 1; i < n; i ++){
    26             for(int j = 0; j < m; j++){
    27                 if(matrix[i - 1][j] == 0){
    28                     upZeros[i][j] = upZeros[i - 1][j] + 1;
    29                 }
    30                 else{
    31                     upZeros[i][j] = 0;
    32                 }                
    33             }
    34         }
    35         int[][] dp = new int[n][m];
    36         for(int i = 0; i < n; i++){
    37             dp[i][0] = matrix[i][0];    
    38         }
    39         for(int j = 0; j < m; j++){
    40             dp[0][j] = matrix[0][j];
    41         }
    42         for(int i = 1; i < n; i++){
    43             for(int j = 1; j < m; j++){
    44                 if(matrix[i][j] == 0){
    45                     dp[i][j] = 0;
    46                 }
    47                 else{
    48                     dp[i][j] = Math.min(Math.min(leftZeros[i][j], upZeros[i][j]), dp[i - 1][j - 1]) + 1;
    49                 }
    50             }
    51         }
    52         int max = 0;
    53         for(int i = 0; i < n; i++){
    54             for(int j = 0; j < m; j++){
    55                 max = Math.max(max, dp[i][j]);    
    56             }
    57         }
    58         return max * max;
    59     }
    60 }

    Related Problems

    Maximal Square

    Maximum Subsquare surrounded by 'X'

  • 相关阅读:
    安装Hadoop
    爬虫综合大作业
    爬取全部校园新闻
    理解爬虫原理
    中文词频统计与词云生成
    复合数据类型,英文词频统计
    字符串操作、文件操作,英文词频统计预处理
    了解大数据的特点、来源与数据呈现方式
    大数据应用期末总评
    分布式文件系统HDFS 练习
  • 原文地址:https://www.cnblogs.com/lz87/p/7393780.html
Copyright © 2011-2022 走看看