zoukankan      html  css  js  c++  java
  • [LintCode] Maximal Square II

    Given a 2D binary matrix filled with 0's and 1's, find the largest square which diagonal is all 1 and others is 0.

    Only consider the main diagonal situation.
    Example

    For example, given the following matrix:

    1 0 1 0 0
    1 0 0 1 0
    1 1 0 0 1
    1 0 0 1 0
    

    Return 9

    Similiarly with Maximal Square, we can check each entry of 1 from scratch and get the max length of a square whose diagonal is all 1 and others are 0.

    Again, this straightforward solution suffers the same NOT using previous check results to expediate our algorithm's runtime.

    So we jump directly into the dynamic programming solution. 

    State: dp[i][j]: the max length of a square with only diagonal 1s whose bottom right corner is matrix[i][j]. 

    Function: dp[i][j] = 0, if matrix[i][j] == 0;

         dp[i][j] = 1 + min {leftZeros[i][j], upZeros[i][j], dp[i - 1][j - 1]}, if matrix[i][j] == 1;

    Similarly with Maxmial Square, when matrix[i][j] is 1, we also need to check its left, top, top left side.

    leftZeros[i][j] is the max number of consecutive 0s to the left of matrix[i][j];

    upZeros[i][j] is the max number of consecutive 0s to the top of matrix[i][j];

    These two along with dp[i - 1][j - 1] decides the max length of a sqaure with only diagonal 1s whose bottom right corner is matrix[i][j]. 

     1 public class Solution {
     2     public int maxSquare2(int[][] matrix) {
     3         if(matrix == null || matrix.length == 0 || matrix[0].length == 0){
     4             return 0;
     5         }
     6         int n = matrix.length; int m = matrix[0].length;
     7         int[][] leftZeros = new int[n][m];
     8         int[][] upZeros = new int[n][m];
     9         for(int i = 0; i < n; i++){
    10             leftZeros[i][0] = 0;
    11         }
    12         for(int j = 0; j < m; j++){
    13             upZeros[0][j] = 0;
    14         }
    15         for(int i = 0; i < n; i++){
    16             for(int j = 1; j < m; j++){
    17                 if(matrix[i][j - 1] == 0){
    18                     leftZeros[i][j] = leftZeros[i][j - 1] + 1;
    19                 }    
    20                 else{
    21                     leftZeros[i][j] = 0;
    22                 }
    23             }
    24         }
    25         for(int i = 1; i < n; i ++){
    26             for(int j = 0; j < m; j++){
    27                 if(matrix[i - 1][j] == 0){
    28                     upZeros[i][j] = upZeros[i - 1][j] + 1;
    29                 }
    30                 else{
    31                     upZeros[i][j] = 0;
    32                 }                
    33             }
    34         }
    35         int[][] dp = new int[n][m];
    36         for(int i = 0; i < n; i++){
    37             dp[i][0] = matrix[i][0];    
    38         }
    39         for(int j = 0; j < m; j++){
    40             dp[0][j] = matrix[0][j];
    41         }
    42         for(int i = 1; i < n; i++){
    43             for(int j = 1; j < m; j++){
    44                 if(matrix[i][j] == 0){
    45                     dp[i][j] = 0;
    46                 }
    47                 else{
    48                     dp[i][j] = Math.min(Math.min(leftZeros[i][j], upZeros[i][j]), dp[i - 1][j - 1]) + 1;
    49                 }
    50             }
    51         }
    52         int max = 0;
    53         for(int i = 0; i < n; i++){
    54             for(int j = 0; j < m; j++){
    55                 max = Math.max(max, dp[i][j]);    
    56             }
    57         }
    58         return max * max;
    59     }
    60 }

    Related Problems

    Maximal Square

    Maximum Subsquare surrounded by 'X'

  • 相关阅读:
    老师不能把你怎样,但外面的世界可以!
    又一大波笑到肾抽筋,笑出六块腹肌的段子
    又一大波笑到肾抽筋,笑出六块腹肌的段子
    又一大波笑到肾抽筋,笑出六块腹肌的段子
    最近流行的12个笑话,好笑又有道理
    最近流行的12个笑话,好笑又有道理
    最近流行的12个笑话,好笑又有道理
    2016最佳温情小说:雨还在下....
    2016最佳温情小说:雨还在下....
    2016最佳温情小说:雨还在下....
  • 原文地址:https://www.cnblogs.com/lz87/p/7393780.html
Copyright © 2011-2022 走看看