zoukankan      html  css  js  c++  java
  • POJ 1458 Common Subsequence

    Common Subsequence
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 33069   Accepted: 12966

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0
    解题方法:最长公共子序列,直接套用模版。
    #include <stdio.h>
    #include <string.h>
    #include <iostream>
    using namespace std;
    
    int main()
    {
        char str[300];
        char substr[300];
        int dp[300][300];
        while(scanf("%s %s", str, substr) != EOF)
        {
            int nLen = strlen(str);
            int nLen1 = strlen(substr);
            for (int i = 0; i <= nLen; i++)
            {
                dp[i][0] = 0;
            }
            for (int i = 0; i <= nLen1; i++)
            {
                dp[0][i] = 0;
            }
            for (int i = 1; i <= nLen; i++)
            {
                for (int j = 1; j <= nLen1; j++)
                {
                    if (str[i - 1] == substr[j - 1])
                    {
                        dp[i][j] = dp[i - 1][j - 1] + 1;
                    }
                    else
                    {
                        dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]);
                    }
                }
            }
            printf("%d
    ", dp[nLen][nLen1]);
        }
        return 0;
    }


  • 相关阅读:
    redis乐观锁
    redis
    解决创建Redis容器没有conf配置文件
    redis缓存配置
    Docker架构
    Flask获取数据的一些方法
    Nginx正向代理、反向代理与负载均衡
    Sanic
    Dockerfile详解
    Centos7上安装docker
  • 原文地址:https://www.cnblogs.com/lzmfywz/p/3162369.html
Copyright © 2011-2022 走看看