zoukankan      html  css  js  c++  java
  • POJ 1458 Common Subsequence

    Common Subsequence
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 33069   Accepted: 12966

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0
    解题方法:最长公共子序列,直接套用模版。
    #include <stdio.h>
    #include <string.h>
    #include <iostream>
    using namespace std;
    
    int main()
    {
        char str[300];
        char substr[300];
        int dp[300][300];
        while(scanf("%s %s", str, substr) != EOF)
        {
            int nLen = strlen(str);
            int nLen1 = strlen(substr);
            for (int i = 0; i <= nLen; i++)
            {
                dp[i][0] = 0;
            }
            for (int i = 0; i <= nLen1; i++)
            {
                dp[0][i] = 0;
            }
            for (int i = 1; i <= nLen; i++)
            {
                for (int j = 1; j <= nLen1; j++)
                {
                    if (str[i - 1] == substr[j - 1])
                    {
                        dp[i][j] = dp[i - 1][j - 1] + 1;
                    }
                    else
                    {
                        dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]);
                    }
                }
            }
            printf("%d
    ", dp[nLen][nLen1]);
        }
        return 0;
    }


  • 相关阅读:
    Java Generics and Collections-2.2
    Java Generics and Collections-2.1
    Java Generics and Collections-8.1
    oracle 倒库后insert id冲突的问题
    第十章 基本数据结构 练习 10.4-4
    第十章 基本数据结构 练习 10.4-2
    第十章 基本数据结构 练习 10.4-3
    第九章 中位数和顺序统计量 9.2 期望为线性时间的选择算法
    Log4j2的基本使用
    JSF页面中的JS取得受管bean的数据(受管bean发送数据到页面)
  • 原文地址:https://www.cnblogs.com/lzmfywz/p/3162369.html
Copyright © 2011-2022 走看看