zoukankan      html  css  js  c++  java
  • POJ 1458 Common Subsequence

    Common Subsequence
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 33069   Accepted: 12966

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0
    解题方法:最长公共子序列,直接套用模版。
    #include <stdio.h>
    #include <string.h>
    #include <iostream>
    using namespace std;
    
    int main()
    {
        char str[300];
        char substr[300];
        int dp[300][300];
        while(scanf("%s %s", str, substr) != EOF)
        {
            int nLen = strlen(str);
            int nLen1 = strlen(substr);
            for (int i = 0; i <= nLen; i++)
            {
                dp[i][0] = 0;
            }
            for (int i = 0; i <= nLen1; i++)
            {
                dp[0][i] = 0;
            }
            for (int i = 1; i <= nLen; i++)
            {
                for (int j = 1; j <= nLen1; j++)
                {
                    if (str[i - 1] == substr[j - 1])
                    {
                        dp[i][j] = dp[i - 1][j - 1] + 1;
                    }
                    else
                    {
                        dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]);
                    }
                }
            }
            printf("%d
    ", dp[nLen][nLen1]);
        }
        return 0;
    }


  • 相关阅读:
    POSTMAN使用教程
    RocketMQ搭建-WEB集成RMQ-SE集成RMQ
    android studio 低版本升级高版本的问题
    SqlServer 2015修改表时出现“save changes is not permitted…”的解决方法
    MATLAB
    新的学习,加油!
    BAK文件怎么恢复到数据库中
    Go语言基础之包
    Go语言基础之文件操作
    python获取多线程的返回值
  • 原文地址:https://www.cnblogs.com/lzmfywz/p/3162369.html
Copyright © 2011-2022 走看看