题意转载于:優YoU http://user.qzone.qq.com/289065406/blog/1303350143
大致题意:
给出一个国际棋盘的大小,判断马能否不重复的走过所有格,并记录下其中按字典序排列的第一种路径。
解题思路:
难度不大,但要注意的地方有3点:
1、 题目要求以"lexicographically"方式输出,也就是字典序...要以字典序输出路径,那么搜索的方向(我的程序是path()函数)就要以特殊的顺序排列了...这样只要每次从dfs(A,1)开始搜索,第一个成功遍历的路径一定是以字典序排列...
下图是搜索的次序,马的位置为当前位置,序号格为测试下一步的位置的测试先后顺序
按这个顺序测试,那么第一次成功周游的顺序就是字典序
2、国际象棋的棋盘,行为数字p;列为字母q
大神说这是水题一道, 可对于本菜鸟来说还是挺难的,纠结了半天,还是参考的各大神的解题报告,主要是对Dfs理解不够,革命道路依旧漫长啊!!
这是题目:
A Knight's Journey
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 26044 | Accepted: 8888 |
Description
Background The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 * 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans?
Problem Find a path such that the knight visits every square once. The knight can start and end on any square of the board.
Problem Find a path such that the knight visits every square once. The knight can start and end on any square of the board.
Input
The input begins with a positive integer n in the first line. The following lines contain n test cases. Each test case consists of a single line with two positive integers p and q, such that 1 <= p * q <= 26. This represents a p * q chessboard, where p describes how many different square numbers 1, . . . , p exist, q describes how many different square letters exist. These are the first q letters of the Latin alphabet: A, . . .
Output
The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the lexicographically first path that visits all squares of the chessboard with knight moves followed by an empty line. The path should be given on a single line by concatenating the names of the visited squares. Each square name consists of a capital letter followed by a number.
If no such path exist, you should output impossible on a single line.
If no such path exist, you should output impossible on a single line.
Sample Input
3 1 1 2 3 4 3
Sample Output
Scenario #1: A1 Scenario #2: impossible Scenario #3: A1B3C1A2B4C2A3B1C3A4B2C4
经过大神“指点”之后的代码:
1 #include<stdio.h> 2 #include<string.h> 3 #include<stdlib.h> 4 int t,n,m; 5 int s[26][26];//标记数组 6 char p[60]; 7 static int dis[8][2]={-2, -1, -2, 1, -1, -2, -1, 2, 1, -2, 1, 2, 2, -1, 2, 1};//方向 8 int dfs(int x,int y,int mark) 9 { 10 if(mark==n*m) return 1; 11 int x1,y1; 12 for(int i=0;i<8;++i) 13 { 14 x1=x+dis[i][0]; 15 y1=y+dis[i][1]; 16 if(x1>=0&&x1<m&&y1>=0&&y1<n&&s[y1][x1]==0) 17 { 18 s[y1][x1]=1; 19 p[(mark<<1)]=x1+'A';//记录列 20 p[(mark<<1)+1]=y1+'1';//记录行 21 if(dfs(x1,y1,mark+1)) 22 return 1; 23 s[y1][x1]=0; 24 } 25 } 26 return 0; 27 } 28 29 int main() 30 { 31 32 scanf("%d",&t); 33 for(int i=1;i<=t;i++) 34 { 35 scanf("%d %d",&n,&m); 36 memset(s,0,sizeof(s)); 37 memset(p,0,sizeof(p)); 38 s[0][0]=1; 39 p[0]='A'; 40 p[1]='1'; 41 if(dfs(0,0,1)) 42 { 43 printf("Scenario #%d: ",i); 44 for(int j=0;j<strlen(p);j++) 45 printf("%c",p[j]); 46 printf(" "); 47 } 48 else 49 { 50 printf("Scenario #%d: impossible ",i); 51 } 52 } 53 return 0; 54 }