zoukankan      html  css  js  c++  java
  • sigslot信号槽的库使用

    1. 在windows下可能编译出问题,则尝试使用windows下的sigslot.h,我也忘记是哪里拷过来的了,总之谢谢开源大佬

      window下的

    windows下的sigslot.h 展开看看

    // sigslot.h: Signal/Slot classes
    //
    // Written by Sarah Thompson (sarah@telergy.com) 2002.
    //
    // License: Public domain. You are free to use this code however you like, with the proviso that
    // the author takes on no responsibility or liability for any use.
    //
    // QUICK DOCUMENTATION
    //
    // (see also the full documentation at http://sigslot.sourceforge.net/)
    //
    // #define switches
    // SIGSLOT_PURE_ISO - Define this to force ISO C++ compliance. This also disables
    // all of the thread safety support on platforms where it is
    // available.
    //
    // SIGSLOT_USE_POSIX_THREADS - Force use of Posix threads when using a C++ compiler other than
    // gcc on a platform that supports Posix threads. (When using gcc,
    // this is the default - use SIGSLOT_PURE_ISO to disable this if
    // necessary)
    //
    // SIGSLOT_DEFAULT_MT_POLICY - Where thread support is enabled, this defaults to multi_threaded_global.
    // Otherwise, the default is single_threaded. #define this yourself to
    // override the default. In pure ISO mode, anything other than
    // single_threaded will cause a compiler error.
    //
    // PLATFORM NOTES
    //
    // Win32 - On Win32, the WIN32 symbol must be #defined. Most mainstream
    // compilers do this by default, but you may need to define it
    // yourself if your build environment is less standard. This causes
    // the Win32 thread support to be compiled in and used automatically.
    //
    // Unix/Linux/BSD, etc. - If you're using gcc, it is assumed that you have Posix threads
    // available, so they are used automatically. You can override this
    // (as under Windows) with the SIGSLOT_PURE_ISO switch. If you're using
    // something other than gcc but still want to use Posix threads, you
    // need to #define SIGSLOT_USE_POSIX_THREADS.
    //
    // ISO C++ - If none of the supported platforms are detected, or if
    // SIGSLOT_PURE_ISO is defined, all multithreading support is turned off,
    // along with any code that might cause a pure ISO C++ environment to
    // complain. Before you ask, gcc -ansi -pedantic won't compile this
    // library, but gcc -ansi is fine. Pedantic mode seems to throw a lot of
    // errors that aren't really there. If you feel like investigating this,
    // please contact the author.
    //
    //
    // THREADING MODES
    //
    // single_threaded - Your program is assumed to be single threaded from the point of view
    // of signal/slot usage (i.e. all objects using signals and slots are
    // created and destroyed from a single thread). Behaviour if objects are
    // destroyed concurrently is undefined (i.e. you'll get the occasional
    // segmentation fault/memory exception).
    //
    // multi_threaded_global - Your program is assumed to be multi threaded. Objects using signals and
    // slots can be safely created and destroyed from any thread, even when
    // connections exist. In multi_threaded_global mode, this is achieved by a
    // single global mutex (actually a critical section on Windows because they
    // are faster). This option uses less OS resources, but results in more
    // opportunities for contention, possibly resulting in more context switches
    // than are strictly necessary.
    //
    // multi_threaded_local - Behaviour in this mode is essentially the same as multi_threaded_global,
    // except that each signal, and each object that inherits has_slots, all
    // have their own mutex/critical section. In practice, this means that
    // mutex collisions (and hence context switches) only happen if they are
    // absolutely essential. However, on some platforms, creating a lot of
    // mutexes can slow down the whole OS, so use this option with care.
    //
    // USING THE LIBRARY
    //
    // See the full documentation at http://sigslot.sourceforge.net/
    //
    //
    // Libjingle specific:
    // This file has been modified such that has_slots and signalx do not have to be
    // using the same threading requirements. E.g. it is possible to connect a
    // has_slots<single_threaded> and signal0<multi_threaded_local> or
    // has_slots<multi_threaded_local> and signal0<single_threaded>.
    // If has_slots is single threaded the user must ensure that it is not trying
    // to connect or disconnect to signalx concurrently or data race may occur.
    // If signalx is single threaded the user must ensure that disconnect, connect
    // or signal is not happening concurrently or data race may occur.

    ifndef SIGSLOT_H_

    define SIGSLOT_H_

    include

    include

    include <stdlib.h>

    // On our copy of sigslot.h, we set single threading as default.

    define SIGSLOT_DEFAULT_MT_POLICY single_threaded

    if defined(SIGSLOT_PURE_ISO) || (!defined(WIN32) && !defined(GNUG) && !defined(SIGSLOT_USE_POSIX_THREADS))

    define _SIGSLOT_SINGLE_THREADED

    elif defined(WIN32)

    define _SIGSLOT_HAS_WIN32_THREADS

    if !defined(WIN32_LEAN_AND_MEAN)

    define WIN32_LEAN_AND_MEAN

    endif

    include <windows.h>

    elif defined(GNUG) || defined(SIGSLOT_USE_POSIX_THREADS)

    define _SIGSLOT_HAS_POSIX_THREADS

    include <pthread.h>

    else

    define _SIGSLOT_SINGLE_THREADED

    endif

    ifndef SIGSLOT_DEFAULT_MT_POLICY

    ifdef _SIGSLOT_SINGLE_THREADED

    define SIGSLOT_DEFAULT_MT_POLICY single_threaded

    else

    define SIGSLOT_DEFAULT_MT_POLICY multi_threaded_local

    endif

    endif

    // TODO: change this namespace to talk_base?
    namespace sigslot {

    class single_threaded
    {
    public:
    	single_threaded()
    	{
    		;
    	}
    
    	virtual ~single_threaded()
    	{
    		;
    	}
    
    	virtual void lock()
    	{
    		;
    	}
    
    	virtual void unlock()
    	{
    		;
    	}
    };
    

    ifdef _SIGSLOT_HAS_WIN32_THREADS

    // The multi threading policies only get compiled in if they are enabled.
    class multi_threaded_global
    {
    public:
    	multi_threaded_global()
    	{
    		static bool isinitialised = false;
    
    		if (!isinitialised)
    		{
    			InitializeCriticalSection(get_critsec());
    			isinitialised = true;
    		}
    	}
    
    	multi_threaded_global(const multi_threaded_global&)
    	{
    		;
    	}
    
    	virtual ~multi_threaded_global()
    	{
    		;
    	}
    
    	virtual void lock()
    	{
    		EnterCriticalSection(get_critsec());
    	}
    
    	virtual void unlock()
    	{
    		LeaveCriticalSection(get_critsec());
    	}
    
    private:
    	CRITICAL_SECTION* get_critsec()
    	{
    		static CRITICAL_SECTION g_critsec;
    		return &g_critsec;
    	}
    };
    
    class multi_threaded_local
    {
    public:
    	multi_threaded_local()
    	{
    		InitializeCriticalSection(&m_critsec);
    	}
    
    	multi_threaded_local(const multi_threaded_local&)
    	{
    		InitializeCriticalSection(&m_critsec);
    	}
    
    	virtual ~multi_threaded_local()
    	{
    		DeleteCriticalSection(&m_critsec);
    	}
    
    	virtual void lock()
    	{
    		EnterCriticalSection(&m_critsec);
    	}
    
    	virtual void unlock()
    	{
    		LeaveCriticalSection(&m_critsec);
    	}
    
    private:
    	CRITICAL_SECTION m_critsec;
    };
    

    endif // _SIGSLOT_HAS_WIN32_THREADS

    ifdef _SIGSLOT_HAS_POSIX_THREADS

    // The multi threading policies only get compiled in if they are enabled.
    class multi_threaded_global
    {
    public:
    	multi_threaded_global()
    	{
    		pthread_mutex_init(get_mutex(), NULL);
    	}
    
    	multi_threaded_global(const multi_threaded_global&)
    	{
    		;
    	}
    
    	virtual ~multi_threaded_global()
    	{
    		;
    	}
    
    	virtual void lock()
    	{
    		pthread_mutex_lock(get_mutex());
    	}
    
    	virtual void unlock()
    	{
    		pthread_mutex_unlock(get_mutex());
    	}
    
    private:
    	pthread_mutex_t* get_mutex()
    	{
    		static pthread_mutex_t g_mutex;
    		return &g_mutex;
    	}
    };
    
    class multi_threaded_local
    {
    public:
    	multi_threaded_local()
    	{
    		pthread_mutex_init(&m_mutex, NULL);
    	}
    
    	multi_threaded_local(const multi_threaded_local&)
    	{
    		pthread_mutex_init(&m_mutex, NULL);
    	}
    
    	virtual ~multi_threaded_local()
    	{
    		pthread_mutex_destroy(&m_mutex);
    	}
    
    	virtual void lock()
    	{
    		pthread_mutex_lock(&m_mutex);
    	}
    
    	virtual void unlock()
    	{
    		pthread_mutex_unlock(&m_mutex);
    	}
    
    private:
    	pthread_mutex_t m_mutex;
    };
    

    endif // _SIGSLOT_HAS_POSIX_THREADS

    template<class mt_policy>
    class lock_block
    {
    public:
    	mt_policy *m_mutex;
    
    	lock_block(mt_policy *mtx)
    		: m_mutex(mtx)
    	{
    		m_mutex->lock();
    	}
    
    	~lock_block()
    	{
    		m_mutex->unlock();
    	}
    };
    
    class has_slots_interface;
    
    template<class mt_policy>
    class _connection_base0
    {
    public:
    	virtual ~_connection_base0() {}
    	virtual has_slots_interface* getdest() const = 0;
    	virtual void emit() = 0;
    	virtual _connection_base0* clone() = 0;
    	virtual _connection_base0* duplicate(has_slots_interface* pnewdest) = 0;
    };
    
    template<class arg1_type, class mt_policy>
    class _connection_base1
    {
    public:
    	virtual ~_connection_base1() {}
    	virtual has_slots_interface* getdest() const = 0;
    	virtual void emit(arg1_type) = 0;
    	virtual _connection_base1<arg1_type, mt_policy>* clone() = 0;
    	virtual _connection_base1<arg1_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
    };
    
    template<class arg1_type, class arg2_type, class mt_policy>
    class _connection_base2
    {
    public:
    	virtual ~_connection_base2() {}
    	virtual has_slots_interface* getdest() const = 0;
    	virtual void emit(arg1_type, arg2_type) = 0;
    	virtual _connection_base2<arg1_type, arg2_type, mt_policy>* clone() = 0;
    	virtual _connection_base2<arg1_type, arg2_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
    };
    
    template<class arg1_type, class arg2_type, class arg3_type, class mt_policy>
    class _connection_base3
    {
    public:
    	virtual ~_connection_base3() {}
    	virtual has_slots_interface* getdest() const = 0;
    	virtual void emit(arg1_type, arg2_type, arg3_type) = 0;
    	virtual _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>* clone() = 0;
    	virtual _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
    };
    
    template<class arg1_type, class arg2_type, class arg3_type, class arg4_type, class mt_policy>
    class _connection_base4
    {
    public:
    	virtual ~_connection_base4() {}
    	virtual has_slots_interface* getdest() const = 0;
    	virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type) = 0;
    	virtual _connection_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>* clone() = 0;
    	virtual _connection_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
    };
    
    template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
    	class arg5_type, class mt_policy>
    	class _connection_base5
    {
    public:
    	virtual ~_connection_base5() {}
    	virtual has_slots_interface* getdest() const = 0;
    	virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type) = 0;
    	virtual _connection_base5<arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, mt_policy>* clone() = 0;
    	virtual _connection_base5<arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
    };
    
    template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
    	class arg5_type, class arg6_type, class mt_policy>
    	class _connection_base6
    {
    public:
    	virtual ~_connection_base6() {}
    	virtual has_slots_interface* getdest() const = 0;
    	virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type,
    		arg6_type) = 0;
    	virtual _connection_base6<arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, arg6_type, mt_policy>* clone() = 0;
    	virtual _connection_base6<arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, arg6_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
    };
    
    template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
    	class arg5_type, class arg6_type, class arg7_type, class mt_policy>
    	class _connection_base7
    {
    public:
    	virtual ~_connection_base7() {}
    	virtual has_slots_interface* getdest() const = 0;
    	virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type,
    		arg6_type, arg7_type) = 0;
    	virtual _connection_base7<arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, arg6_type, arg7_type, mt_policy>* clone() = 0;
    	virtual _connection_base7<arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, arg6_type, arg7_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
    };
    
    template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
    	class arg5_type, class arg6_type, class arg7_type, class arg8_type, class mt_policy>
    	class _connection_base8
    {
    public:
    	virtual ~_connection_base8() {}
    	virtual has_slots_interface* getdest() const = 0;
    	virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type,
    		arg6_type, arg7_type, arg8_type) = 0;
    	virtual _connection_base8<arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* clone() = 0;
    	virtual _connection_base8<arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
    };
    
    class _signal_base_interface
    {
    public:
    	virtual void slot_disconnect(has_slots_interface* pslot) = 0;
    	virtual void slot_duplicate(const has_slots_interface* poldslot, has_slots_interface* pnewslot) = 0;
    };
    
    template<class mt_policy>
    class _signal_base : public _signal_base_interface, public mt_policy
    {
    };
    
    class has_slots_interface
    {
    public:
    	has_slots_interface()
    	{
    		;
    	}
    
    	virtual void signal_connect(_signal_base_interface* sender) = 0;
    
    	virtual void signal_disconnect(_signal_base_interface* sender) = 0;
    
    	virtual ~has_slots_interface()
    	{
    	}
    
    	virtual void disconnect_all() = 0;
    };
    
    template<class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
    class has_slots : public has_slots_interface, public mt_policy
    {
    private:
    	typedef std::set<_signal_base_interface*> sender_set;
    	typedef sender_set::const_iterator const_iterator;
    
    public:
    	has_slots()
    	{
    		;
    	}
    
    	has_slots(const has_slots& hs)
    	{
    		lock_block<mt_policy> lock(this);
    		const_iterator it = hs.m_senders.begin();
    		const_iterator itEnd = hs.m_senders.end();
    
    		while (it != itEnd)
    		{
    			(*it)->slot_duplicate(&hs, this);
    			m_senders.insert(*it);
    			++it;
    		}
    	}
    
    	void signal_connect(_signal_base_interface* sender)
    	{
    		lock_block<mt_policy> lock(this);
    		m_senders.insert(sender);
    	}
    
    	void signal_disconnect(_signal_base_interface* sender)
    	{
    		lock_block<mt_policy> lock(this);
    		m_senders.erase(sender);
    	}
    
    	virtual ~has_slots()
    	{
    		disconnect_all();
    	}
    
    	void disconnect_all()
    	{
    		lock_block<mt_policy> lock(this);
    		const_iterator it = m_senders.begin();
    		const_iterator itEnd = m_senders.end();
    
    		while (it != itEnd)
    		{
    			(*it)->slot_disconnect(this);
    			++it;
    		}
    
    		m_senders.erase(m_senders.begin(), m_senders.end());
    	}
    
    private:
    	sender_set m_senders;
    };
    
    template<class mt_policy>
    class _signal_base0 : public _signal_base<mt_policy>
    {
    public:
    	typedef std::list<_connection_base0<mt_policy> *>  connections_list;
    
    	_signal_base0()
    	{
    		;
    	}
    
    	_signal_base0(const _signal_base0& s)
    		: _signal_base<mt_policy>(s)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator it = s.m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = s.m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			(*it)->getdest()->signal_connect(this);
    			m_connected_slots.push_back((*it)->clone());
    
    			++it;
    		}
    	}
    
    	~_signal_base0()
    	{
    		disconnect_all();
    	}
    
    	bool is_empty()
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    		return it == itEnd;
    	}
    
    	void disconnect_all()
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			(*it)->getdest()->signal_disconnect(this);
    			delete *it;
    
    			++it;
    		}
    
    		m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
    	}
    

    ifdef _DEBUG

    	bool connected(has_slots_interface* pclass)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    		while (it != itEnd)
    		{
    			itNext = it;
    			++itNext;
    			if ((*it)->getdest() == pclass)
    				return true;
    			it = itNext;
    		}
    		return false;
    	}
    

    endif

    	void disconnect(has_slots_interface* pclass)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::iterator it = m_connected_slots.begin();
    		typename connections_list::iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			if ((*it)->getdest() == pclass)
    			{
    				delete *it;
    				m_connected_slots.erase(it);
    				pclass->signal_disconnect(this);
    				return;
    			}
    
    			++it;
    		}
    	}
    
    	void slot_disconnect(has_slots_interface* pslot)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::iterator it = m_connected_slots.begin();
    		typename connections_list::iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			typename connections_list::iterator itNext = it;
    			++itNext;
    
    			if ((*it)->getdest() == pslot)
    			{
    				delete *it;
    				m_connected_slots.erase(it);
    			}
    
    			it = itNext;
    		}
    	}
    
    	void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::iterator it = m_connected_slots.begin();
    		typename connections_list::iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			if ((*it)->getdest() == oldtarget)
    			{
    				m_connected_slots.push_back((*it)->duplicate(newtarget));
    			}
    
    			++it;
    		}
    	}
    
    protected:
    	connections_list m_connected_slots;
    };
    
    template<class arg1_type, class mt_policy>
    class _signal_base1 : public _signal_base<mt_policy>
    {
    public:
    	typedef std::list<_connection_base1<arg1_type, mt_policy> *>  connections_list;
    
    	_signal_base1()
    	{
    		;
    	}
    
    	_signal_base1(const _signal_base1<arg1_type, mt_policy>& s)
    		: _signal_base<mt_policy>(s)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator it = s.m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = s.m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			(*it)->getdest()->signal_connect(this);
    			m_connected_slots.push_back((*it)->clone());
    
    			++it;
    		}
    	}
    
    	void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::iterator it = m_connected_slots.begin();
    		typename connections_list::iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			if ((*it)->getdest() == oldtarget)
    			{
    				m_connected_slots.push_back((*it)->duplicate(newtarget));
    			}
    
    			++it;
    		}
    	}
    
    	~_signal_base1()
    	{
    		disconnect_all();
    	}
    
    	bool is_empty()
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    		return it == itEnd;
    	}
    
    	void disconnect_all()
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			(*it)->getdest()->signal_disconnect(this);
    			delete *it;
    
    			++it;
    		}
    
    		m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
    	}
    

    ifdef _DEBUG

    	bool connected(has_slots_interface* pclass)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    		while (it != itEnd)
    		{
    			itNext = it;
    			++itNext;
    			if ((*it)->getdest() == pclass)
    				return true;
    			it = itNext;
    		}
    		return false;
    	}
    

    endif

    	void disconnect(has_slots_interface* pclass)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::iterator it = m_connected_slots.begin();
    		typename connections_list::iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			if ((*it)->getdest() == pclass)
    			{
    				delete *it;
    				m_connected_slots.erase(it);
    				pclass->signal_disconnect(this);
    				return;
    			}
    
    			++it;
    		}
    	}
    
    	void slot_disconnect(has_slots_interface* pslot)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::iterator it = m_connected_slots.begin();
    		typename connections_list::iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			typename connections_list::iterator itNext = it;
    			++itNext;
    
    			if ((*it)->getdest() == pslot)
    			{
    				delete *it;
    				m_connected_slots.erase(it);
    			}
    
    			it = itNext;
    		}
    	}
    
    
    protected:
    	connections_list m_connected_slots;
    };
    
    template<class arg1_type, class arg2_type, class mt_policy>
    class _signal_base2 : public _signal_base<mt_policy>
    {
    public:
    	typedef std::list<_connection_base2<arg1_type, arg2_type, mt_policy> *>
    		connections_list;
    
    	_signal_base2()
    	{
    		;
    	}
    
    	_signal_base2(const _signal_base2<arg1_type, arg2_type, mt_policy>& s)
    		: _signal_base<mt_policy>(s)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator it = s.m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = s.m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			(*it)->getdest()->signal_connect(this);
    			m_connected_slots.push_back((*it)->clone());
    
    			++it;
    		}
    	}
    
    	void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::iterator it = m_connected_slots.begin();
    		typename connections_list::iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			if ((*it)->getdest() == oldtarget)
    			{
    				m_connected_slots.push_back((*it)->duplicate(newtarget));
    			}
    
    			++it;
    		}
    	}
    
    	~_signal_base2()
    	{
    		disconnect_all();
    	}
    
    	bool is_empty()
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    		return it == itEnd;
    	}
    
    	void disconnect_all()
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			(*it)->getdest()->signal_disconnect(this);
    			delete *it;
    
    			++it;
    		}
    
    		m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
    	}
    

    ifdef _DEBUG

    	bool connected(has_slots_interface* pclass)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    		while (it != itEnd)
    		{
    			itNext = it;
    			++itNext;
    			if ((*it)->getdest() == pclass)
    				return true;
    			it = itNext;
    		}
    		return false;
    	}
    

    endif

    	void disconnect(has_slots_interface* pclass)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::iterator it = m_connected_slots.begin();
    		typename connections_list::iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			if ((*it)->getdest() == pclass)
    			{
    				delete *it;
    				m_connected_slots.erase(it);
    				pclass->signal_disconnect(this);
    				return;
    			}
    
    			++it;
    		}
    	}
    
    	void slot_disconnect(has_slots_interface* pslot)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::iterator it = m_connected_slots.begin();
    		typename connections_list::iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			typename connections_list::iterator itNext = it;
    			++itNext;
    
    			if ((*it)->getdest() == pslot)
    			{
    				delete *it;
    				m_connected_slots.erase(it);
    			}
    
    			it = itNext;
    		}
    	}
    
    protected:
    	connections_list m_connected_slots;
    };
    
    template<class arg1_type, class arg2_type, class arg3_type, class mt_policy>
    class _signal_base3 : public _signal_base<mt_policy>
    {
    public:
    	typedef std::list<_connection_base3<arg1_type, arg2_type, arg3_type, mt_policy> *>
    		connections_list;
    
    	_signal_base3()
    	{
    		;
    	}
    
    	_signal_base3(const _signal_base3<arg1_type, arg2_type, arg3_type, mt_policy>& s)
    		: _signal_base<mt_policy>(s)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator it = s.m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = s.m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			(*it)->getdest()->signal_connect(this);
    			m_connected_slots.push_back((*it)->clone());
    
    			++it;
    		}
    	}
    
    	void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::iterator it = m_connected_slots.begin();
    		typename connections_list::iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			if ((*it)->getdest() == oldtarget)
    			{
    				m_connected_slots.push_back((*it)->duplicate(newtarget));
    			}
    
    			++it;
    		}
    	}
    
    	~_signal_base3()
    	{
    		disconnect_all();
    	}
    
    	bool is_empty()
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    		return it == itEnd;
    	}
    
    	void disconnect_all()
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			(*it)->getdest()->signal_disconnect(this);
    			delete *it;
    
    			++it;
    		}
    
    		m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
    	}
    

    ifdef _DEBUG

    	bool connected(has_slots_interface* pclass)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    		while (it != itEnd)
    		{
    			itNext = it;
    			++itNext;
    			if ((*it)->getdest() == pclass)
    				return true;
    			it = itNext;
    		}
    		return false;
    	}
    

    endif

    	void disconnect(has_slots_interface* pclass)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::iterator it = m_connected_slots.begin();
    		typename connections_list::iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			if ((*it)->getdest() == pclass)
    			{
    				delete *it;
    				m_connected_slots.erase(it);
    				pclass->signal_disconnect(this);
    				return;
    			}
    
    			++it;
    		}
    	}
    
    	void slot_disconnect(has_slots_interface* pslot)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::iterator it = m_connected_slots.begin();
    		typename connections_list::iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			typename connections_list::iterator itNext = it;
    			++itNext;
    
    			if ((*it)->getdest() == pslot)
    			{
    				delete *it;
    				m_connected_slots.erase(it);
    			}
    
    			it = itNext;
    		}
    	}
    
    protected:
    	connections_list m_connected_slots;
    };
    
    template<class arg1_type, class arg2_type, class arg3_type, class arg4_type, class mt_policy>
    class _signal_base4 : public _signal_base<mt_policy>
    {
    public:
    	typedef std::list<_connection_base4<arg1_type, arg2_type, arg3_type,
    		arg4_type, mt_policy> *>  connections_list;
    
    	_signal_base4()
    	{
    		;
    	}
    
    	_signal_base4(const _signal_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>& s)
    		: _signal_base<mt_policy>(s)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator it = s.m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = s.m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			(*it)->getdest()->signal_connect(this);
    			m_connected_slots.push_back((*it)->clone());
    
    			++it;
    		}
    	}
    
    	void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::iterator it = m_connected_slots.begin();
    		typename connections_list::iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			if ((*it)->getdest() == oldtarget)
    			{
    				m_connected_slots.push_back((*it)->duplicate(newtarget));
    			}
    
    			++it;
    		}
    	}
    
    	~_signal_base4()
    	{
    		disconnect_all();
    	}
    
    	bool is_empty()
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    		return it == itEnd;
    	}
    
    	void disconnect_all()
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			(*it)->getdest()->signal_disconnect(this);
    			delete *it;
    
    			++it;
    		}
    
    		m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
    	}
    

    ifdef _DEBUG

    	bool connected(has_slots_interface* pclass)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    		while (it != itEnd)
    		{
    			itNext = it;
    			++itNext;
    			if ((*it)->getdest() == pclass)
    				return true;
    			it = itNext;
    		}
    		return false;
    	}
    

    endif

    	void disconnect(has_slots_interface* pclass)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::iterator it = m_connected_slots.begin();
    		typename connections_list::iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			if ((*it)->getdest() == pclass)
    			{
    				delete *it;
    				m_connected_slots.erase(it);
    				pclass->signal_disconnect(this);
    				return;
    			}
    
    			++it;
    		}
    	}
    
    	void slot_disconnect(has_slots_interface* pslot)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::iterator it = m_connected_slots.begin();
    		typename connections_list::iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			typename connections_list::iterator itNext = it;
    			++itNext;
    
    			if ((*it)->getdest() == pslot)
    			{
    				delete *it;
    				m_connected_slots.erase(it);
    			}
    
    			it = itNext;
    		}
    	}
    
    protected:
    	connections_list m_connected_slots;
    };
    
    template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
    	class arg5_type, class mt_policy>
    	class _signal_base5 : public _signal_base<mt_policy>
    {
    public:
    	typedef std::list<_connection_base5<arg1_type, arg2_type, arg3_type,
    		arg4_type, arg5_type, mt_policy> *>  connections_list;
    
    	_signal_base5()
    	{
    		;
    	}
    
    	_signal_base5(const _signal_base5<arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, mt_policy>& s)
    		: _signal_base<mt_policy>(s)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator it = s.m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = s.m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			(*it)->getdest()->signal_connect(this);
    			m_connected_slots.push_back((*it)->clone());
    
    			++it;
    		}
    	}
    
    	void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::iterator it = m_connected_slots.begin();
    		typename connections_list::iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			if ((*it)->getdest() == oldtarget)
    			{
    				m_connected_slots.push_back((*it)->duplicate(newtarget));
    			}
    
    			++it;
    		}
    	}
    
    	~_signal_base5()
    	{
    		disconnect_all();
    	}
    
    	bool is_empty()
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    		return it == itEnd;
    	}
    
    	void disconnect_all()
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			(*it)->getdest()->signal_disconnect(this);
    			delete *it;
    
    			++it;
    		}
    
    		m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
    	}
    

    ifdef _DEBUG

    	bool connected(has_slots_interface* pclass)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    		while (it != itEnd)
    		{
    			itNext = it;
    			++itNext;
    			if ((*it)->getdest() == pclass)
    				return true;
    			it = itNext;
    		}
    		return false;
    	}
    

    endif

    	void disconnect(has_slots_interface* pclass)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::iterator it = m_connected_slots.begin();
    		typename connections_list::iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			if ((*it)->getdest() == pclass)
    			{
    				delete *it;
    				m_connected_slots.erase(it);
    				pclass->signal_disconnect(this);
    				return;
    			}
    
    			++it;
    		}
    	}
    
    	void slot_disconnect(has_slots_interface* pslot)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::iterator it = m_connected_slots.begin();
    		typename connections_list::iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			typename connections_list::iterator itNext = it;
    			++itNext;
    
    			if ((*it)->getdest() == pslot)
    			{
    				delete *it;
    				m_connected_slots.erase(it);
    			}
    
    			it = itNext;
    		}
    	}
    
    protected:
    	connections_list m_connected_slots;
    };
    
    template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
    	class arg5_type, class arg6_type, class mt_policy>
    	class _signal_base6 : public _signal_base<mt_policy>
    {
    public:
    	typedef std::list<_connection_base6<arg1_type, arg2_type, arg3_type,
    		arg4_type, arg5_type, arg6_type, mt_policy> *>  connections_list;
    
    	_signal_base6()
    	{
    		;
    	}
    
    	_signal_base6(const _signal_base6<arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, arg6_type, mt_policy>& s)
    		: _signal_base<mt_policy>(s)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator it = s.m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = s.m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			(*it)->getdest()->signal_connect(this);
    			m_connected_slots.push_back((*it)->clone());
    
    			++it;
    		}
    	}
    
    	void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::iterator it = m_connected_slots.begin();
    		typename connections_list::iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			if ((*it)->getdest() == oldtarget)
    			{
    				m_connected_slots.push_back((*it)->duplicate(newtarget));
    			}
    
    			++it;
    		}
    	}
    
    	~_signal_base6()
    	{
    		disconnect_all();
    	}
    
    	bool is_empty()
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    		return it == itEnd;
    	}
    
    	void disconnect_all()
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			(*it)->getdest()->signal_disconnect(this);
    			delete *it;
    
    			++it;
    		}
    
    		m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
    	}
    

    ifdef _DEBUG

    	bool connected(has_slots_interface* pclass)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    		while (it != itEnd)
    		{
    			itNext = it;
    			++itNext;
    			if ((*it)->getdest() == pclass)
    				return true;
    			it = itNext;
    		}
    		return false;
    	}
    

    endif

    	void disconnect(has_slots_interface* pclass)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::iterator it = m_connected_slots.begin();
    		typename connections_list::iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			if ((*it)->getdest() == pclass)
    			{
    				delete *it;
    				m_connected_slots.erase(it);
    				pclass->signal_disconnect(this);
    				return;
    			}
    
    			++it;
    		}
    	}
    
    	void slot_disconnect(has_slots_interface* pslot)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::iterator it = m_connected_slots.begin();
    		typename connections_list::iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			typename connections_list::iterator itNext = it;
    			++itNext;
    
    			if ((*it)->getdest() == pslot)
    			{
    				delete *it;
    				m_connected_slots.erase(it);
    			}
    
    			it = itNext;
    		}
    	}
    
    protected:
    	connections_list m_connected_slots;
    };
    
    template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
    	class arg5_type, class arg6_type, class arg7_type, class mt_policy>
    	class _signal_base7 : public _signal_base<mt_policy>
    {
    public:
    	typedef std::list<_connection_base7<arg1_type, arg2_type, arg3_type,
    		arg4_type, arg5_type, arg6_type, arg7_type, mt_policy> *>  connections_list;
    
    	_signal_base7()
    	{
    		;
    	}
    
    	_signal_base7(const _signal_base7<arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, arg6_type, arg7_type, mt_policy>& s)
    		: _signal_base<mt_policy>(s)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator it = s.m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = s.m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			(*it)->getdest()->signal_connect(this);
    			m_connected_slots.push_back((*it)->clone());
    
    			++it;
    		}
    	}
    
    	void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::iterator it = m_connected_slots.begin();
    		typename connections_list::iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			if ((*it)->getdest() == oldtarget)
    			{
    				m_connected_slots.push_back((*it)->duplicate(newtarget));
    			}
    
    			++it;
    		}
    	}
    
    	~_signal_base7()
    	{
    		disconnect_all();
    	}
    
    	bool is_empty()
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    		return it == itEnd;
    	}
    
    	void disconnect_all()
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			(*it)->getdest()->signal_disconnect(this);
    			delete *it;
    
    			++it;
    		}
    
    		m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
    	}
    

    ifdef _DEBUG

    	bool connected(has_slots_interface* pclass)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    		while (it != itEnd)
    		{
    			itNext = it;
    			++itNext;
    			if ((*it)->getdest() == pclass)
    				return true;
    			it = itNext;
    		}
    		return false;
    	}
    

    endif

    	void disconnect(has_slots_interface* pclass)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::iterator it = m_connected_slots.begin();
    		typename connections_list::iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			if ((*it)->getdest() == pclass)
    			{
    				delete *it;
    				m_connected_slots.erase(it);
    				pclass->signal_disconnect(this);
    				return;
    			}
    
    			++it;
    		}
    	}
    
    	void slot_disconnect(has_slots_interface* pslot)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::iterator it = m_connected_slots.begin();
    		typename connections_list::iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			typename connections_list::iterator itNext = it;
    			++itNext;
    
    			if ((*it)->getdest() == pslot)
    			{
    				delete *it;
    				m_connected_slots.erase(it);
    			}
    
    			it = itNext;
    		}
    	}
    
    protected:
    	connections_list m_connected_slots;
    };
    
    template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
    	class arg5_type, class arg6_type, class arg7_type, class arg8_type, class mt_policy>
    	class _signal_base8 : public _signal_base<mt_policy>
    {
    public:
    	typedef std::list<_connection_base8<arg1_type, arg2_type, arg3_type,
    		arg4_type, arg5_type, arg6_type, arg7_type, arg8_type, mt_policy> *>
    		connections_list;
    
    	_signal_base8()
    	{
    		;
    	}
    
    	_signal_base8(const _signal_base8<arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>& s)
    		: _signal_base<mt_policy>(s)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator it = s.m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = s.m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			(*it)->getdest()->signal_connect(this);
    			m_connected_slots.push_back((*it)->clone());
    
    			++it;
    		}
    	}
    
    	void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::iterator it = m_connected_slots.begin();
    		typename connections_list::iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			if ((*it)->getdest() == oldtarget)
    			{
    				m_connected_slots.push_back((*it)->duplicate(newtarget));
    			}
    
    			++it;
    		}
    	}
    
    	~_signal_base8()
    	{
    		disconnect_all();
    	}
    
    	bool is_empty()
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    		return it == itEnd;
    	}
    
    	void disconnect_all()
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			(*it)->getdest()->signal_disconnect(this);
    			delete *it;
    
    			++it;
    		}
    
    		m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
    	}
    

    ifdef _DEBUG

    	bool connected(has_slots_interface* pclass)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    		while (it != itEnd)
    		{
    			itNext = it;
    			++itNext;
    			if ((*it)->getdest() == pclass)
    				return true;
    			it = itNext;
    		}
    		return false;
    	}
    

    endif

    	void disconnect(has_slots_interface* pclass)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::iterator it = m_connected_slots.begin();
    		typename connections_list::iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			if ((*it)->getdest() == pclass)
    			{
    				delete *it;
    				m_connected_slots.erase(it);
    				pclass->signal_disconnect(this);
    				return;
    			}
    
    			++it;
    		}
    	}
    
    	void slot_disconnect(has_slots_interface* pslot)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::iterator it = m_connected_slots.begin();
    		typename connections_list::iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			typename connections_list::iterator itNext = it;
    			++itNext;
    
    			if ((*it)->getdest() == pslot)
    			{
    				delete *it;
    				m_connected_slots.erase(it);
    			}
    
    			it = itNext;
    		}
    	}
    
    protected:
    	connections_list m_connected_slots;
    };
    
    
    template<class dest_type, class mt_policy>
    class _connection0 : public _connection_base0<mt_policy>
    {
    public:
    	_connection0()
    	{
    		m_pobject = NULL;
    		m_pmemfun = NULL;
    	}
    
    	_connection0(dest_type* pobject, void (dest_type::*pmemfun)())
    	{
    		m_pobject = pobject;
    		m_pmemfun = pmemfun;
    	}
    
    	virtual ~_connection0()
    	{
    	}
    
    	virtual _connection_base0<mt_policy>* clone()
    	{
    		return new _connection0<dest_type, mt_policy>(*this);
    	}
    
    	virtual _connection_base0<mt_policy>* duplicate(has_slots_interface* pnewdest)
    	{
    		return new _connection0<dest_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
    	}
    
    	virtual void emit()
    	{
    		(m_pobject->*m_pmemfun)();
    	}
    
    	virtual has_slots_interface* getdest() const
    	{
    		return m_pobject;
    	}
    
    private:
    	dest_type* m_pobject;
    	void (dest_type::* m_pmemfun)();
    };
    
    template<class dest_type, class arg1_type, class mt_policy>
    class _connection1 : public _connection_base1<arg1_type, mt_policy>
    {
    public:
    	_connection1()
    	{
    		m_pobject = NULL;
    		m_pmemfun = NULL;
    	}
    
    	_connection1(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type))
    	{
    		m_pobject = pobject;
    		m_pmemfun = pmemfun;
    	}
    
    	virtual ~_connection1()
    	{
    	}
    
    	virtual _connection_base1<arg1_type, mt_policy>* clone()
    	{
    		return new _connection1<dest_type, arg1_type, mt_policy>(*this);
    	}
    
    	virtual _connection_base1<arg1_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
    	{
    		return new _connection1<dest_type, arg1_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
    	}
    
    	virtual void emit(arg1_type a1)
    	{
    		(m_pobject->*m_pmemfun)(a1);
    	}
    
    	virtual has_slots_interface* getdest() const
    	{
    		return m_pobject;
    	}
    
    private:
    	dest_type* m_pobject;
    	void (dest_type::* m_pmemfun)(arg1_type);
    };
    
    template<class dest_type, class arg1_type, class arg2_type, class mt_policy>
    class _connection2 : public _connection_base2<arg1_type, arg2_type, mt_policy>
    {
    public:
    	_connection2()
    	{
    		m_pobject = NULL;
    		m_pmemfun = NULL;
    	}
    
    	_connection2(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
    		arg2_type))
    	{
    		m_pobject = pobject;
    		m_pmemfun = pmemfun;
    	}
    
    	virtual ~_connection2()
    	{
    	}
    
    	virtual _connection_base2<arg1_type, arg2_type, mt_policy>* clone()
    	{
    		return new _connection2<dest_type, arg1_type, arg2_type, mt_policy>(*this);
    	}
    
    	virtual _connection_base2<arg1_type, arg2_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
    	{
    		return new _connection2<dest_type, arg1_type, arg2_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
    	}
    
    	virtual void emit(arg1_type a1, arg2_type a2)
    	{
    		(m_pobject->*m_pmemfun)(a1, a2);
    	}
    
    	virtual has_slots_interface* getdest() const
    	{
    		return m_pobject;
    	}
    
    private:
    	dest_type* m_pobject;
    	void (dest_type::* m_pmemfun)(arg1_type, arg2_type);
    };
    
    template<class dest_type, class arg1_type, class arg2_type, class arg3_type, class mt_policy>
    class _connection3 : public _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>
    {
    public:
    	_connection3()
    	{
    		m_pobject = NULL;
    		m_pmemfun = NULL;
    	}
    
    	_connection3(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
    		arg2_type, arg3_type))
    	{
    		m_pobject = pobject;
    		m_pmemfun = pmemfun;
    	}
    
    	virtual ~_connection3()
    	{
    	}
    
    	virtual _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>* clone()
    	{
    		return new _connection3<dest_type, arg1_type, arg2_type, arg3_type, mt_policy>(*this);
    	}
    
    	virtual _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
    	{
    		return new _connection3<dest_type, arg1_type, arg2_type, arg3_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
    	}
    
    	virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3)
    	{
    		(m_pobject->*m_pmemfun)(a1, a2, a3);
    	}
    
    	virtual has_slots_interface* getdest() const
    	{
    		return m_pobject;
    	}
    
    private:
    	dest_type* m_pobject;
    	void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type);
    };
    
    template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
    	class arg4_type, class mt_policy>
    	class _connection4 : public _connection_base4<arg1_type, arg2_type,
    	arg3_type, arg4_type, mt_policy>
    {
    public:
    	_connection4()
    	{
    		m_pobject = NULL;
    		m_pmemfun = NULL;
    	}
    
    	_connection4(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
    		arg2_type, arg3_type, arg4_type))
    	{
    		m_pobject = pobject;
    		m_pmemfun = pmemfun;
    	}
    
    	virtual ~_connection4()
    	{
    	}
    
    	virtual _connection_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>* clone()
    	{
    		return new _connection4<dest_type, arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>(*this);
    	}
    
    	virtual _connection_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
    	{
    		return new _connection4<dest_type, arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
    	}
    
    	virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3,
    		arg4_type a4)
    	{
    		(m_pobject->*m_pmemfun)(a1, a2, a3, a4);
    	}
    
    	virtual has_slots_interface* getdest() const
    	{
    		return m_pobject;
    	}
    
    private:
    	dest_type* m_pobject;
    	void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type,
    		arg4_type);
    };
    
    template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
    	class arg4_type, class arg5_type, class mt_policy>
    	class _connection5 : public _connection_base5<arg1_type, arg2_type,
    	arg3_type, arg4_type, arg5_type, mt_policy>
    {
    public:
    	_connection5()
    	{
    		m_pobject = NULL;
    		m_pmemfun = NULL;
    	}
    
    	_connection5(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
    		arg2_type, arg3_type, arg4_type, arg5_type))
    	{
    		m_pobject = pobject;
    		m_pmemfun = pmemfun;
    	}
    
    	virtual ~_connection5()
    	{
    	}
    
    	virtual _connection_base5<arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, mt_policy>* clone()
    	{
    		return new _connection5<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
    			arg5_type, mt_policy>(*this);
    	}
    
    	virtual _connection_base5<arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
    	{
    		return new _connection5<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
    			arg5_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
    	}
    
    	virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
    		arg5_type a5)
    	{
    		(m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5);
    	}
    
    	virtual has_slots_interface* getdest() const
    	{
    		return m_pobject;
    	}
    
    private:
    	dest_type* m_pobject;
    	void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type);
    };
    
    template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
    	class arg4_type, class arg5_type, class arg6_type, class mt_policy>
    	class _connection6 : public _connection_base6<arg1_type, arg2_type,
    	arg3_type, arg4_type, arg5_type, arg6_type, mt_policy>
    {
    public:
    	_connection6()
    	{
    		m_pobject = NULL;
    		m_pmemfun = NULL;
    	}
    
    	_connection6(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
    		arg2_type, arg3_type, arg4_type, arg5_type, arg6_type))
    	{
    		m_pobject = pobject;
    		m_pmemfun = pmemfun;
    	}
    
    	virtual ~_connection6()
    	{
    	}
    
    	virtual _connection_base6<arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, arg6_type, mt_policy>* clone()
    	{
    		return new _connection6<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
    			arg5_type, arg6_type, mt_policy>(*this);
    	}
    
    	virtual _connection_base6<arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, arg6_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
    	{
    		return new _connection6<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
    			arg5_type, arg6_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
    	}
    
    	virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
    		arg5_type a5, arg6_type a6)
    	{
    		(m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5, a6);
    	}
    
    	virtual has_slots_interface* getdest() const
    	{
    		return m_pobject;
    	}
    
    private:
    	dest_type* m_pobject;
    	void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, arg6_type);
    };
    
    template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
    	class arg4_type, class arg5_type, class arg6_type, class arg7_type, class mt_policy>
    	class _connection7 : public _connection_base7<arg1_type, arg2_type,
    	arg3_type, arg4_type, arg5_type, arg6_type, arg7_type, mt_policy>
    {
    public:
    	_connection7()
    	{
    		m_pobject = NULL;
    		m_pmemfun = NULL;
    	}
    
    	_connection7(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
    		arg2_type, arg3_type, arg4_type, arg5_type, arg6_type, arg7_type))
    	{
    		m_pobject = pobject;
    		m_pmemfun = pmemfun;
    	}
    
    	virtual ~_connection7()
    	{
    	}
    
    	virtual _connection_base7<arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, arg6_type, arg7_type, mt_policy>* clone()
    	{
    		return new _connection7<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
    			arg5_type, arg6_type, arg7_type, mt_policy>(*this);
    	}
    
    	virtual _connection_base7<arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, arg6_type, arg7_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
    	{
    		return new _connection7<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
    			arg5_type, arg6_type, arg7_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
    	}
    
    	virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
    		arg5_type a5, arg6_type a6, arg7_type a7)
    	{
    		(m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5, a6, a7);
    	}
    
    	virtual has_slots_interface* getdest() const
    	{
    		return m_pobject;
    	}
    
    private:
    	dest_type* m_pobject;
    	void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, arg6_type, arg7_type);
    };
    
    template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
    	class arg4_type, class arg5_type, class arg6_type, class arg7_type,
    	class arg8_type, class mt_policy>
    	class _connection8 : public _connection_base8<arg1_type, arg2_type,
    	arg3_type, arg4_type, arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>
    {
    public:
    	_connection8()
    	{
    		m_pobject = NULL;
    		m_pmemfun = NULL;
    	}
    
    	_connection8(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
    		arg2_type, arg3_type, arg4_type, arg5_type, arg6_type,
    		arg7_type, arg8_type))
    	{
    		m_pobject = pobject;
    		m_pmemfun = pmemfun;
    	}
    
    	virtual ~_connection8()
    	{
    	}
    
    	virtual _connection_base8<arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* clone()
    	{
    		return new _connection8<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
    			arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>(*this);
    	}
    
    	virtual _connection_base8<arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
    	{
    		return new _connection8<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
    			arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
    	}
    
    	virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
    		arg5_type a5, arg6_type a6, arg7_type a7, arg8_type a8)
    	{
    		(m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5, a6, a7, a8);
    	}
    
    	virtual has_slots_interface* getdest() const
    	{
    		return m_pobject;
    	}
    
    private:
    	dest_type* m_pobject;
    	void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, arg6_type, arg7_type, arg8_type);
    };
    
    template<class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
    class signal0 : public _signal_base0<mt_policy>
    {
    public:
    	typedef _signal_base0<mt_policy> base;
    	typedef typename base::connections_list connections_list;
    	using base::m_connected_slots;
    
    	signal0()
    	{
    		;
    	}
    
    	signal0(const signal0<mt_policy>& s)
    		: _signal_base0<mt_policy>(s)
    	{
    		;
    	}
    
    	template<class desttype>
    	void connect(desttype* pclass, void (desttype::*pmemfun)())
    	{
    		lock_block<mt_policy> lock(this);
    		_connection0<desttype, mt_policy>* conn =
    			new _connection0<desttype, mt_policy>(pclass, pmemfun);
    		m_connected_slots.push_back(conn);
    		pclass->signal_connect(this);
    	}
    
    	void emit()
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			itNext = it;
    			++itNext;
    
    			(*it)->emit();
    
    			it = itNext;
    		}
    	}
    
    	void operator()()
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			itNext = it;
    			++itNext;
    
    			(*it)->emit();
    
    			it = itNext;
    		}
    	}
    };
    
    template<class arg1_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
    class signal1 : public _signal_base1<arg1_type, mt_policy>
    {
    public:
    	typedef _signal_base1<arg1_type, mt_policy> base;
    	typedef typename base::connections_list connections_list;
    	using base::m_connected_slots;
    
    	signal1()
    	{
    		;
    	}
    
    	signal1(const signal1<arg1_type, mt_policy>& s)
    		: _signal_base1<arg1_type, mt_policy>(s)
    	{
    		;
    	}
    
    	template<class desttype>
    	void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type))
    	{
    		lock_block<mt_policy> lock(this);
    		_connection1<desttype, arg1_type, mt_policy>* conn =
    			new _connection1<desttype, arg1_type, mt_policy>(pclass, pmemfun);
    		m_connected_slots.push_back(conn);
    		pclass->signal_connect(this);
    	}
    
    	void emit(arg1_type a1)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			itNext = it;
    			++itNext;
    
    			(*it)->emit(a1);
    
    			it = itNext;
    		}
    	}
    
    	void operator()(arg1_type a1)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			itNext = it;
    			++itNext;
    
    			(*it)->emit(a1);
    
    			it = itNext;
    		}
    	}
    };
    
    template<class arg1_type, class arg2_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
    class signal2 : public _signal_base2<arg1_type, arg2_type, mt_policy>
    {
    public:
    	typedef _signal_base2<arg1_type, arg2_type, mt_policy> base;
    	typedef typename base::connections_list connections_list;
    	using base::m_connected_slots;
    
    	signal2()
    	{
    		;
    	}
    
    	signal2(const signal2<arg1_type, arg2_type, mt_policy>& s)
    		: _signal_base2<arg1_type, arg2_type, mt_policy>(s)
    	{
    		;
    	}
    
    	template<class desttype>
    	void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
    		arg2_type))
    	{
    		lock_block<mt_policy> lock(this);
    		_connection2<desttype, arg1_type, arg2_type, mt_policy>* conn = new
    			_connection2<desttype, arg1_type, arg2_type, mt_policy>(pclass, pmemfun);
    		m_connected_slots.push_back(conn);
    		pclass->signal_connect(this);
    	}
    
    	void emit(arg1_type a1, arg2_type a2)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			itNext = it;
    			++itNext;
    
    			(*it)->emit(a1, a2);
    
    			it = itNext;
    		}
    	}
    
    	void operator()(arg1_type a1, arg2_type a2)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			itNext = it;
    			++itNext;
    
    			(*it)->emit(a1, a2);
    
    			it = itNext;
    		}
    	}
    };
    
    template<class arg1_type, class arg2_type, class arg3_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
    class signal3 : public _signal_base3<arg1_type, arg2_type, arg3_type, mt_policy>
    {
    public:
    	typedef _signal_base3<arg1_type, arg2_type, arg3_type, mt_policy> base;
    	typedef typename base::connections_list connections_list;
    	using base::m_connected_slots;
    
    	signal3()
    	{
    		;
    	}
    
    	signal3(const signal3<arg1_type, arg2_type, arg3_type, mt_policy>& s)
    		: _signal_base3<arg1_type, arg2_type, arg3_type, mt_policy>(s)
    	{
    		;
    	}
    
    	template<class desttype>
    	void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
    		arg2_type, arg3_type))
    	{
    		lock_block<mt_policy> lock(this);
    		_connection3<desttype, arg1_type, arg2_type, arg3_type, mt_policy>* conn =
    			new _connection3<desttype, arg1_type, arg2_type, arg3_type, mt_policy>(pclass,
    				pmemfun);
    		m_connected_slots.push_back(conn);
    		pclass->signal_connect(this);
    	}
    
    	void emit(arg1_type a1, arg2_type a2, arg3_type a3)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			itNext = it;
    			++itNext;
    
    			(*it)->emit(a1, a2, a3);
    
    			it = itNext;
    		}
    	}
    
    	void operator()(arg1_type a1, arg2_type a2, arg3_type a3)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			itNext = it;
    			++itNext;
    
    			(*it)->emit(a1, a2, a3);
    
    			it = itNext;
    		}
    	}
    };
    
    template<class arg1_type, class arg2_type, class arg3_type, class arg4_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
    class signal4 : public _signal_base4<arg1_type, arg2_type, arg3_type,
    	arg4_type, mt_policy>
    {
    public:
    	typedef _signal_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy> base;
    	typedef typename base::connections_list connections_list;
    	using base::m_connected_slots;
    
    	signal4()
    	{
    		;
    	}
    
    	signal4(const signal4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>& s)
    		: _signal_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>(s)
    	{
    		;
    	}
    
    	template<class desttype>
    	void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
    		arg2_type, arg3_type, arg4_type))
    	{
    		lock_block<mt_policy> lock(this);
    		_connection4<desttype, arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>*
    			conn = new _connection4<desttype, arg1_type, arg2_type, arg3_type,
    			arg4_type, mt_policy>(pclass, pmemfun);
    		m_connected_slots.push_back(conn);
    		pclass->signal_connect(this);
    	}
    
    	void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			itNext = it;
    			++itNext;
    
    			(*it)->emit(a1, a2, a3, a4);
    
    			it = itNext;
    		}
    	}
    
    	void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			itNext = it;
    			++itNext;
    
    			(*it)->emit(a1, a2, a3, a4);
    
    			it = itNext;
    		}
    	}
    };
    
    template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
    	class arg5_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
    	class signal5 : public _signal_base5<arg1_type, arg2_type, arg3_type,
    	arg4_type, arg5_type, mt_policy>
    {
    public:
    	typedef _signal_base5<arg1_type, arg2_type, arg3_type, arg4_type, arg5_type, mt_policy> base;
    	typedef typename base::connections_list connections_list;
    	using base::m_connected_slots;
    
    	signal5()
    	{
    		;
    	}
    
    	signal5(const signal5<arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, mt_policy>& s)
    		: _signal_base5<arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, mt_policy>(s)
    	{
    		;
    	}
    
    	template<class desttype>
    	void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
    		arg2_type, arg3_type, arg4_type, arg5_type))
    	{
    		lock_block<mt_policy> lock(this);
    		_connection5<desttype, arg1_type, arg2_type, arg3_type, arg4_type,
    			arg5_type, mt_policy>* conn = new _connection5<desttype, arg1_type, arg2_type,
    			arg3_type, arg4_type, arg5_type, mt_policy>(pclass, pmemfun);
    		m_connected_slots.push_back(conn);
    		pclass->signal_connect(this);
    	}
    
    	void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
    		arg5_type a5)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			itNext = it;
    			++itNext;
    
    			(*it)->emit(a1, a2, a3, a4, a5);
    
    			it = itNext;
    		}
    	}
    
    	void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
    		arg5_type a5)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			itNext = it;
    			++itNext;
    
    			(*it)->emit(a1, a2, a3, a4, a5);
    
    			it = itNext;
    		}
    	}
    };
    
    
    template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
    	class arg5_type, class arg6_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
    	class signal6 : public _signal_base6<arg1_type, arg2_type, arg3_type,
    	arg4_type, arg5_type, arg6_type, mt_policy>
    {
    public:
    	typedef _signal_base6<arg1_type, arg2_type, arg3_type, arg4_type, arg5_type, arg6_type, mt_policy> base;
    	typedef typename base::connections_list connections_list;
    	using base::m_connected_slots;
    
    	signal6()
    	{
    		;
    	}
    
    	signal6(const signal6<arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, arg6_type, mt_policy>& s)
    		: _signal_base6<arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, arg6_type, mt_policy>(s)
    	{
    		;
    	}
    
    	template<class desttype>
    	void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
    		arg2_type, arg3_type, arg4_type, arg5_type, arg6_type))
    	{
    		lock_block<mt_policy> lock(this);
    		_connection6<desttype, arg1_type, arg2_type, arg3_type, arg4_type,
    			arg5_type, arg6_type, mt_policy>* conn =
    			new _connection6<desttype, arg1_type, arg2_type, arg3_type,
    			arg4_type, arg5_type, arg6_type, mt_policy>(pclass, pmemfun);
    		m_connected_slots.push_back(conn);
    		pclass->signal_connect(this);
    	}
    
    	void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
    		arg5_type a5, arg6_type a6)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			itNext = it;
    			++itNext;
    
    			(*it)->emit(a1, a2, a3, a4, a5, a6);
    
    			it = itNext;
    		}
    	}
    
    	void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
    		arg5_type a5, arg6_type a6)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			itNext = it;
    			++itNext;
    
    			(*it)->emit(a1, a2, a3, a4, a5, a6);
    
    			it = itNext;
    		}
    	}
    };
    
    template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
    	class arg5_type, class arg6_type, class arg7_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
    	class signal7 : public _signal_base7<arg1_type, arg2_type, arg3_type,
    	arg4_type, arg5_type, arg6_type, arg7_type, mt_policy>
    {
    public:
    	typedef _signal_base7<arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, arg6_type, arg7_type, mt_policy> base;
    	typedef typename base::connections_list connections_list;
    	using base::m_connected_slots;
    
    	signal7()
    	{
    		;
    	}
    
    	signal7(const signal7<arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, arg6_type, arg7_type, mt_policy>& s)
    		: _signal_base7<arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, arg6_type, arg7_type, mt_policy>(s)
    	{
    		;
    	}
    
    	template<class desttype>
    	void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
    		arg2_type, arg3_type, arg4_type, arg5_type, arg6_type,
    		arg7_type))
    	{
    		lock_block<mt_policy> lock(this);
    		_connection7<desttype, arg1_type, arg2_type, arg3_type, arg4_type,
    			arg5_type, arg6_type, arg7_type, mt_policy>* conn =
    			new _connection7<desttype, arg1_type, arg2_type, arg3_type,
    			arg4_type, arg5_type, arg6_type, arg7_type, mt_policy>(pclass, pmemfun);
    		m_connected_slots.push_back(conn);
    		pclass->signal_connect(this);
    	}
    
    	void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
    		arg5_type a5, arg6_type a6, arg7_type a7)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			itNext = it;
    			++itNext;
    
    			(*it)->emit(a1, a2, a3, a4, a5, a6, a7);
    
    			it = itNext;
    		}
    	}
    
    	void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
    		arg5_type a5, arg6_type a6, arg7_type a7)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			itNext = it;
    			++itNext;
    
    			(*it)->emit(a1, a2, a3, a4, a5, a6, a7);
    
    			it = itNext;
    		}
    	}
    };
    
    template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
    	class arg5_type, class arg6_type, class arg7_type, class arg8_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
    	class signal8 : public _signal_base8<arg1_type, arg2_type, arg3_type,
    	arg4_type, arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>
    {
    public:
    	typedef _signal_base8<arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, arg6_type, arg7_type, arg8_type, mt_policy> base;
    	typedef typename base::connections_list connections_list;
    	using base::m_connected_slots;
    
    	signal8()
    	{
    		;
    	}
    
    	signal8(const signal8<arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>& s)
    		: _signal_base8<arg1_type, arg2_type, arg3_type, arg4_type,
    		arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>(s)
    	{
    		;
    	}
    
    	template<class desttype>
    	void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
    		arg2_type, arg3_type, arg4_type, arg5_type, arg6_type,
    		arg7_type, arg8_type))
    	{
    		lock_block<mt_policy> lock(this);
    		_connection8<desttype, arg1_type, arg2_type, arg3_type, arg4_type,
    			arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* conn =
    			new _connection8<desttype, arg1_type, arg2_type, arg3_type,
    			arg4_type, arg5_type, arg6_type, arg7_type,
    			arg8_type, mt_policy>(pclass, pmemfun);
    		m_connected_slots.push_back(conn);
    		pclass->signal_connect(this);
    	}
    
    	void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
    		arg5_type a5, arg6_type a6, arg7_type a7, arg8_type a8)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			itNext = it;
    			++itNext;
    
    			(*it)->emit(a1, a2, a3, a4, a5, a6, a7, a8);
    
    			it = itNext;
    		}
    	}
    
    	void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
    		arg5_type a5, arg6_type a6, arg7_type a7, arg8_type a8)
    	{
    		lock_block<mt_policy> lock(this);
    		typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
    		typename connections_list::const_iterator itEnd = m_connected_slots.end();
    
    		while (it != itEnd)
    		{
    			itNext = it;
    			++itNext;
    
    			(*it)->emit(a1, a2, a3, a4, a5, a6, a7, a8);
    
    			it = itNext;
    		}
    	}
    };
    

    }; // namespace sigslot

    endif // _SIGSLOT_H__s

    1. 使用方法
      1. 只有一个sigslot.h文件,导入即可使用
      2. 带槽函数的类继承自sigslot::has_slots<>
      3. 信号类使用成员变量sigslot::signalXXX<XXX1, XXX2, XXX3...> sig;
        • sigslot::signal2<string, int> sig;
        • sigslot::signal3<string, int, int> sig;
        • 最多到sigslot::signal8<string, int, int, int, int, int, int, int> sig;好像
      4. 触发信号的两种方式
        1. b.sig("make love ", 100);
        2. b.sig.emit("eat apple ", 100);
      5. 代码
        #include "sigslot/sigslot.h"
        class A : public sigslot::has_slots<> {
        public:
            A() { }
            ~A() { }
            virtual void doA(string str) {
                cout << "A say " << str << endl;
            }
            virtual void doA2(string str, int x) {
                cout << "A say " << str << "  " << x << "  times" << endl;
            }
        };
        class B {
        public:
            B() { }
            ~B() { }
            sigslot::signal2<string, int> sig;
        };
        signed main() {
            A a;
            B b;
            // 两种触发信号的方式
            b.sig.connect(&a, &A::doA2);
            b.sig("make love ", 100);
            b.sig.emit("eat apple ", 100);
            return 0;
        }
        
  • 相关阅读:
    MySQL(一)
    HTML基础
    python函数基础
    常用的模块
    面向对象进阶
    定制自己的数据类型
    Shell篇之AWK
    MATLAB如何实现傅里叶变换FFT?有何物理意义?
    傅里叶分析
    2018年度关键词
  • 原文地址:https://www.cnblogs.com/majiao61/p/15027415.html
Copyright © 2011-2022 走看看