关于欧拉函数及其求法的复习请戳这里。
这里是欧拉定理及其扩展的证明。
一句话总结:
(a^b) (mod) (m) (≡) (a^b) ((b < phi(m)))
(a^b) (mod) (m) (≡) (a^{b \% phi(m)+phi(m)}) ((b >= phi(m)))
实际上不需要记欧拉定理,后面这个在应用上已经可以涵盖前面的了。
用于优化指数非常大的情况。
#include <bits/stdc++.h>
using namespace std;
#define LL long long
const int N = 1000010;
int tot, divv[N];
int a, b, m;
int fpow (int a, int b, int m) {
int res = 1;
while (b) {
if (b & 1) {
res = 1LL * res * a % m;
}
a = 1LL * a * a % m;
b >>= 1;
}
return res;
}
int main () {
cin >> a >> m;
int mx = sqrt (m), tmp = m;
for (int i = 2; i <= mx; ++i) {
if (tmp % i == 0) {
divv[++tot] = i;
while (tmp % i == 0) tmp /= i;
}
}
if (tmp != 1) divv[++tot] = tmp;
int _phi = m;
for (int i = 1; i <= tot; ++i) {
_phi = _phi / divv[i] * (divv[i] - 1);
}
int b = 0, ch = getchar (), type = 1;
while ('9' < ch || ch < '0') ch = getchar ();
while ('0' <= ch && ch <= '9') {
b = b * 10 + ch - '0';
if (b >= _phi) {
type = 2;
b = b % _phi;
}
ch = getchar ();
}
if (type == 2) b = b % _phi + _phi;
cout << fpow (a, b, m);
}