zoukankan      html  css  js  c++  java
  • 1007. Minimum Domino Rotations For Equal Row (M)

    Minimum Domino Rotations For Equal Row (M)

    题目

    In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the ith domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.)

    We may rotate the ith domino, so that A[i] and B[i] swap values.

    Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same.

    If it cannot be done, return -1.

    Example 1:

    Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2]
    Output: 2
    Explanation: 
    The first figure represents the dominoes as given by A and B: before we do any rotations.
    If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure.
    

    Example 2:

    Input: A = [3,5,1,2,3], B = [3,6,3,3,4]
    Output: -1
    Explanation: 
    In this case, it is not possible to rotate the dominoes to make one row of values equal.
    

    Constraints:

    • 2 <= A.length == B.length <= 2 * 10^4
    • 1 <= A[i], B[i] <= 6

    题意

    给出若干个瓷砖的正反两面,判断能否通过翻转某些瓷砖来使所有瓷砖显示的数字相同,并求最小的翻转次数。

    思路

    可以从值域[1-6]入手,对于每一个数字,判断它是否出现在每一个瓷砖上,如果不是说明该情况不满足;如果是,计算最小翻转次数。


    代码实现

    Java

    class Solution {
        public int minDominoRotations(int[] A, int[] B) {
            int ans = -1;
            for (int i = 1; i <= 6; i++) {
                boolean valid = true;
                int[] count = new int[2];
                for (int j = 0; j < A.length; j++) {
                    if (A[j] != i && B[j] != i) {
                        valid = false;
                        break;
                    }
                    count[0] += A[j] == i ? 1 : 0;
                    count[1] += B[j] == i ? 1 : 0;
                }
                if (valid) {
                    int tmp = A.length - Math.max(count[0], count[1]);
                    ans = ans == -1 ? tmp : Math.min(ans, tmp);
                }
            }
            return ans;
        }
    }
    
  • 相关阅读:
    [转][LeetCode]Longest Common Prefix ——求字符串的最长公共前缀
    [转]最长回文子串——4种解法
    [转]通过金矿模型介绍动态规划
    一句话说清楚什么是闭包函数
    [转]as3事件流机制彻底理解
    Eclipse 快捷键
    文件打包与解压缩
    第5节 环境变量与文件查找
    vim的多标签
    java思维导图
  • 原文地址:https://www.cnblogs.com/mapoos/p/13843239.html
Copyright © 2011-2022 走看看