zoukankan      html  css  js  c++  java
  • 0589. N-ary Tree Preorder Traversal (E)

    N-ary Tree Preorder Traversal (E)

    题目

    Given the root of an n-ary tree, return the preorder traversal of its nodes' values.

    Nary-Tree input serialization is represented in their level order traversal. Each group of children is separated by the null value (See examples)

    Example 1:

    Input: root = [1,null,3,2,4,null,5,6]
    Output: [1,3,5,6,2,4]
    

    Example 2:

    Input: root = [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14]
    Output: [1,2,3,6,7,11,14,4,8,12,5,9,13,10] 
    

    Constraints:

    • The number of nodes in the tree is in the range [0, 104].
    • 0 <= Node.val <= 10^4
    • The height of the n-ary tree is less than or equal to 1000.

    Follow up: Recursive solution is trivial, could you do it iteratively?


    题意

    实现对一个随机叉树的前序遍历。

    思路

    递归或迭代。


    代码实现

    Java

    递归

    class Solution {
        public List<Integer> preorder(Node root) {
            List<Integer> list = new ArrayList<>();
            dfs(root, list);
            return list;
        }
        
        private void dfs(Node root, List<Integer> list) {
            if (root == null) return;
            
            list.add(root.val);
            for (Node child : root.children) {
                dfs(child, list);
            }
        }
    }
    

    迭代

    class Solution {
        public List<Integer> preorder(Node root) {
            List<Integer> list = new ArrayList<>();
            Deque<Node> stack = new ArrayDeque<>();
            
            if (root != null) stack.push(root);
            
            while (!stack.isEmpty()) {
                Node cur = stack.pop();
                list.add(cur.val);
                for (int i = cur.children.size() - 1; i >= 0; i--) {
                    stack.push(cur.children.get(i));
                }
            }
            
            return list;
        }
    }
    
  • 相关阅读:
    BZOJ 4032: [HEOI2015]最短不公共子串 (dp*3 + SAM)
    后缀自动机详解!
    BZOJ 3926: [Zjoi2015]诸神眷顾的幻想乡(广义后缀自动机 多串)
    BZOJ 3938 Robot
    [JSOI2008]Blue Mary开公司
    [ZJOI2017]树状数组
    [JSOI2015]非诚勿扰
    [HNOI2011]任务调度
    BZOJ 3680 吊打XXX
    POJ 3318 Matrix Multiplication
  • 原文地址:https://www.cnblogs.com/mapoos/p/14681183.html
Copyright © 2011-2022 走看看