我们把(S(i, j)j!)看成是把(i)个球每次选择一些球(不能为空)扔掉,选(j)次后把所有球都扔掉的情况数(顺序有关)。因此(S(i, j)j! = i![x^i](e^x - 1)^j)
为了求出答案,我们需要研究如下的生成函数的性质。
(P(x) = sum_{i = 0}^{n}(2e^x - 2)^i = sum_{i = 0}^{n} 2^i sum_{j = 0}^{i} (-1)^{i - j}e^{jx} {i choose j} = sum_{j = 0}^{n} e^{jx}sum_{i = j}^{n} 2^i(-1)^{i - j} {i choose j})
令(a_j = sum_{i = j}^{n} (-2)^i {i choose j})。在线性时间内计算(a_j)是个经典的问题。
则(a_0)是很容易计算的。
且(j ge 1)时:
(a_j)
(= sum_{i = j}^{n} (-2)^i ({i - 1 choose j} + {i - 1 choose j - 1}))
(= -2sum_{i = j}^{n - 1} (-2)^i{i choose j} -2sum_{i = j - 1}^{n - 1} (-2)^i{i choose j - 1})
(= -2a_j + 2(-2)^{n} {n choose j} - 2a_{j - 1} + 2(-2)^{n} {n choose j - 1})
转换为递推式(a_j = frac{1}{3} (2(-2)^n {n choose j} + 2(-2)^n{n choose j - 1} - 2a_{j - 1}))
欲求的答案就是(sum_{j = 0}^{n} (-1)^ja_j sum_{i = 0}^{n} i![x^i]e^{jx})
我们发现答案就是(sum_{i = 0}^{n} i![x^i]e^{jx} = sum_{i = 0}^{n} j^i),可以使用等比数列求和公式计算。
我们需要计算(j^{n + 1}),这可以先计算出(j)为素数处的取值,然后再用线性筛算出(1 leq j leq n)时的取值。复杂度变成了(O(frac{n}{ln n} cdot log_2{n}) = O(n))
于是,我们在(O(n))的时间内做出了本题。顺便获得目前的rk1.
代码如下:
#include <bits/stdc++.h>
#define debug(x) cerr << #x << " " << (x) << endl
using namespace std;
const int N = 100005;
const long long mod = 998244353ll;
int n, pri[N], cnt = 0;
bool is_pri[N];
long long pw1[N], pw2[N], inv[N], binom[N], a[N], ans = 0ll;
long long qpow (long long a, long long b) {
long long res = 1ll;
for (; b; b >>= 1, a = a * a % mod) {
if (b & 1) res = res * a % mod;
}
return res;
}
void init () {
pw1[1] = pw2[0] = inv[1] = 1ll;
for (int i = 1; i <= max(n, 3); i++) is_pri[i] = (i != 1), pw2[i] = 2ll * (mod - pw2[i - 1]) % mod;
for (int i = 2; i <= max(n, 3); i++) {
inv[i] = (mod / i) * (mod - inv[mod % i]) % mod;
if (is_pri[i]) pw1[i] = qpow(i, n + 1), pri[cnt++] = i;
for (int j = 0; j < cnt && i * pri[j] <= n; j++) {
is_pri[i * pri[j]] = false;
pw1[i * pri[j]] = pw1[i] * pw1[pri[j]] % mod;
if (i % pri[j] == 0) break;
}
}
binom[0] = 1ll;
for (int i = 1; i <= n; i++) binom[i] = binom[i - 1] * (n - i + 1) % mod * inv[i] % mod;
}
int main () {
scanf("%d", &n), init();
a[0] = 0ll;
for (int i = 0; i <= n; i++) a[0] = (a[0] + pw2[i]) % mod;
for (int i = 1; i <= n; i++) {
a[i] = pw2[n] * (binom[i] + binom[i - 1]) % mod;
a[i] = (a[i] - a[i - 1] + mod) % mod;
a[i] = 2ll * a[i] % mod * inv[3] % mod;
}
for (int i = 0; i <= n; i++) {
if (!i) ans = (ans + a[i]) % mod;
else if (i == 1) ans = (ans + mod * mod - a[i] * (n + 1)) % mod;
else if (i & 1) ans = (ans + mod * mod - a[i] * (pw1[i] + mod - 1) % mod * inv[i - 1]) % mod;
else ans = (ans + a[i] * (pw1[i] + mod - 1) % mod * inv[i - 1]) % mod;
}
printf("%lld
", ans);
return 0;
}