前言
泛型 Generic type是JDK1.5引入的一个新特性,允许在定义类和接口的时候使用类型参数(type parameter)。声明的类型参数在使用时用具体的类型来替换。泛型最主要的应用是在JDK 5中的新集合类框架中。
List list=new ArrayList(); list.add(5); list.add("list");
假如不指定实参类型参数,可以向List中添加任意类型的对象,但是这个在遍历的时候就会遇到麻烦,可能会跑出ClassCastException。
要想能够明确遍历的对象,就必须指定类型参数,如下:
List<Integer> list=new ArrayList<Integer>(); list.add(5); list.add("list");//这里编译通不过
编译器会告诉我们必须添加Integer类型的对象,String类型不能添加。
使用泛型后,代码可读性更强,且减少了出错机会。
类型擦除
正确理解泛型概念的首要前提是理解类型擦除(type erasure)。 Java中的泛型基本上都是在编译器这个层次来实现的。在生成的Java字节代码中是不包含泛型中的类型信息的。使用泛型的时候加上的类型参数,会被编译器在编译的时候去掉。这个过程就称为类型擦除。如在代码中定义的List<Object>和List<String>等类型,在编译之后都会变成List。JVM看到的只是List,而由泛型附加的类型信息对JVM来说是不可见的。Java编译器会在编译时尽可能的发现可能出错的地方,但是仍然无法避免在运行时刻出现类型转换异常的情况。类型擦除也是Java的泛型实现方式与C++模板机制实现方式之间的重要区别。
很多泛型的奇怪特性都与这个类型擦除的存在有关,包括:
- 泛型类并没有自己独有的Class类对象。比如并不存在List<String>.class或是List<Integer>.class,而只有List.class。
- 静态变量是被泛型类的所有实例所共享的。对于声明为MyClass<T>的类,访问其中的静态变量的方法仍然是 MyClass.myStaticVar。不管是通过new MyClass<String>还是new MyClass<Integer>创建的对象,都是共享一个静态变量。
- 泛型的类型参数不能用在Java异常处理的catch语句中。因为异常处理是由JVM在运行时刻来进行的。由于类型信息被擦除,JVM是无法区分两个异常类型MyException<String>和MyException<Integer>的。对于JVM来说,它们都是 MyException类型的。也就无法执行与异常对应的catch语句。
类型擦除的基本过程也比较简单,首先是找到用来替换类型参数的具体类。这个具体类一般是Object。如果指定了类型参数的上界的话,则使用这个上界。把代码中的类型参数都替换成具体的类。同时去掉出现的类型声明,即去掉<>的内容。比如T get()方法声明就变成了Object get();List<String>就变成了List。接下来就可能需要生成一些桥接方法(bridge method)。这是由于擦除了类型之后的类可能缺少某些必须的方法。比如考虑下面的代码:
class MyString implements Comparable<String> { public int compareTo(String str) { return 0; } }
当类型信息被擦除之后,上述类的声明变成了class MyString implements Comparable。但是这样的话,类MyString就会有编译错误,因为没有实现接口Comparable声明的int compareTo(Object)方法。这个时候就由编译器来动态生成这个方法。
非协变性与通配符
个人理解,协变性就是 子类能够以和父类相同的方式被支持。
数组的协变性(covariant)是指如果类Base是类Sub的父类,那么Base[]就是Sub[]的父类.
List[] lists=new List[10]; lists[0]=new LinkedList(); lists[1]=new ArrayList();
List[] lists=new ArrayList[10];
上面的这个数组的两个元素类型不同,但是都实现了List接口。下面这个编译就通不过。
ArrayList[] lists=new ArrayList[10]; lists[0]=new LinkedList();//编译通不过
lists[1]=new ArrayList();
泛型是不支持协变的。例如:
public static void main(String[] args) { List<Number> list1=new ArrayList<Number>(); list1.add(1); System.out.println(new Main().getString(list1)); List<Integer> list2=new ArrayList<Integer>(); list2.add(2); System.out.println(new Main().getString(list2));//编译通不过 } public int getString(List<Number> list) { if(list.size()>0) return (Integer)(list.get(0)); return 0; }
要解决这个问题,可以采用通配符 ?
public int getString(List<?> list) { if(list.size()>0) return (Integer)(list.get(0)); return 0; }
这时就能够正常通过编译了。注意这里的?与下面的T的区别,?指的是一个具体的具体类型参数,而T是一个形式类型参数,有点类似形参和实参。
但是有不知道函数是怎么实现的,试图对一个带通配符的泛型类进行操作的时候,总是会出现编译错误。其原因在于通配符所表示的类型是未知的。
因为对于List<?>中的元素只能用Object来引用,在有些情况下不是很方便。在这些情况下,可以使用上下界来限制未知类型的范围。 如List<? extendsNumber>说明List
中可能包含的元素类型是Number及其子类。而List<? super Number>则说明List中包含的是Number及其父类。当引入了上界之后,在使用类型的时候就可以使用上界类中定
义的方法。比如访问 List<? extends Number>的时候,就可以使用Number类的intValue等方法。
对于使用通配符的方法可以做什么呢?可以从中检索元素,但是不能添加元素(可以添加null);
因为编译器无法确定具体类型。
public int getString(List<?> list) { if(list.size()>0) return (Integer)(list.get(0)); list.add(5);//编译通不过 return 0; }
自定义泛型类
下面是一个简单的例子。
class Point<T>{ // 此处可以随便写标识符号,T是type的简称 private T var ; // var的类型由T指定,即:由外部指定 public T getVar(){ // 返回值的类型由外部决定 return var ; } public void setVar(T var){ // 设置的类型也由外部决定 this.var = var ; } }; public class GenericsDemo06{ public static void main(String args[]){ Point<String> p = new Point<String>() ; // 里面的var类型为String类型 p.setVar("it") ; // 设置字符串 System.out.println(p.getVar().length()) ; // 取得字符串的长度 } };
有上限的泛型类
class Info<T extends Number>{ // 指定上限,只能是数字类型 private T var ; // 此类型由外部决定 public T getVar(){ return this.var ; } public void setVar(T var){ this.var = var ; } public String toString(){ // 覆写Object类中的toString()方法 return this.var.toString() ; } }; public class GenericsDemo27{ public static void main(String args[]){ Info<Integer> i = fun(30) ; System.out.println(i.getVar()) ; } public static <T extends Number> Info<T> fun(T param){//方法中传入或返回的泛型类型由调用方法时所设置的参数类型决定 Info<T> temp = new Info<T>() ; // 根据传入的数据类型实例化Info temp.setVar(param) ; // 将传递的内容设置到Info对象的var属性之中 return temp ; // 返回实例化对象 } };
自定义泛型方法
class Demo{ public <T> T fun(T t){ // 可以接收任意类型的数据 return t ; // 直接把参数返回 } }; public class GenericsDemo26{ public static void main(String args[]){ Demo d = new Demo() ; // 实例化Demo对象 String str = d.fun("汤姆") ; // 传递字符串 int i = d.fun(30) ; // 传递数字,自动装箱 System.out.println(str) ; // 输出内容 System.out.println(i) ; // 输出内容 } };
为什么您选择使用泛型方法,而不是将类型T添加到类定义呢?(至少)有两种情况应该这样做:
* 不要求该类是泛型类。
* 当泛型方法是静态的时,这种情况下不能使用类类型参数。
* 当 T 上的类型约束对于方法真正是局部的时,这意味着没有在相同类的另一个 方法签名中使用相同 类型 T 的约束。通过使得泛型方法的类型参数对于方法是局部的,可以简化封闭类型的签名。
泛型接口
interface Info<T>{ // 在接口上定义泛型 public T getVar() ; // 定义抽象方法,抽象方法的返回值就是泛型类型 } class InfoImpl<T> implements Info<T>{ // 定义泛型接口的子类 private T var ; // 定义属性 public InfoImpl(T var){ // 通过构造方法设置属性内容 this.setVar(var) ; } public void setVar(T var){ this.var = var ; } public T getVar(){ return this.var ; } }; public class GenericsDemo24{ public static void main(String arsg[]){ Info<String> i = null; // 声明接口对象 i = new InfoImpl<String>("汤姆") ; // 通过子类实例化对象 System.out.println("内容:" + i.getVar()) ; } }; ---------------------------------------------------------- interface Info<T>{ // 在接口上定义泛型 public T getVar() ; // 定义抽象方法,抽象方法的返回值就是泛型类型 } class InfoImpl implements Info<String>{ // 定义泛型接口的子类 private String var ; // 定义属性 public InfoImpl(String var){ // 通过构造方法设置属性内容 this.setVar(var) ; } public void setVar(String var){ this.var = var ; } public String getVar(){ return this.var ; } }; public class GenericsDemo25{ public static void main(String arsg[]){ Info i = null; // 声明接口对象 i = new InfoImpl("汤姆") ; // 通过子类实例化对象 System.out.println("内容:" + i.getVar()) ; } };
泛型数组
public class GenericsDemo30{ public static void main(String args[]){ Integer i[] = fun1(1,2,3,4,5,6) ; // 返回泛型数组 fun2(i) ; } public static <T> T[] fun1(T...arg){ // 接收可变参数 return arg ; // 返回泛型数组 } public static <T> void fun2(T param[]){ // 输出 System.out.print("接收泛型数组:") ; for(T t:param){ System.out.print(t + "、") ; } } };