zoukankan      html  css  js  c++  java
  • 一个数组类模板CArray3d

    //********************************************
    // Array3d.h
    // class CArray3d :
    //********************************************
    // Careful : this array stores pointers
    // on elements, but does not free memory
    // in destructors, you must call array.Free()
    // to do this.
    //********************************************
    // pierre.alliez@cnet.francetelecom.fr
    // Created : 30/01/98
    // Modified : 18/02/98
    //********************************************

    #ifndef _ARRAY_3D_
    #define _ARRAY_3D_

    template<class T>
    class CArray3d
    {

    // Implementation
    private:
        T** m_pData;     // the actual array of data
        int m_nSize;     // # of elements (upperBound - 1)
        int m_nMaxSize;  // max allocated
        int m_nGrowBy;   // grow amount

    public:

        // Construction
        CArray3d()
        {
            m_pData = NULL;
            m_nSize = 0;
            m_nMaxSize = 0;
            m_nGrowBy = 0;
        }

        // Destruction
        ~CArray3d()
            {
            delete [] (BYTE*)m_pData;
            }

        // Attributes
        int GetSize() { return m_nSize; }
        int GetUpperBound() { return m_nSize-1; }

        // Operations

        // Really clean up
        void Free()
        {
            for(int i=0;i<m_nSize;i++)
                if(m_pData[i] != NULL)
                {
                    delete m_pData[i];
                  m_pData[i] = NULL;
                }
            RemoveAll();
        }

        // Clean up pointers array
        void FreeExtra();

        // Clean up pointers array
        void RemoveAll() { SetSize(0); }

        // Accessing elements
        T* GetAt(int nIndex)
        {
            ASSERT(nIndex >= 0 && nIndex < m_nSize);
            return m_pData[nIndex];
        }

        // SetAt
        void SetAt(int nIndex, T* newElement)
        {
            ASSERT(nIndex >= 0 && nIndex < m_nSize);
            m_pData[nIndex] = newElement;
        }

        // Has
        int Has(T* pElement)
        {
            int size = GetSize();
            for(int i=0;i<size;i++)
                if(GetAt(i) == pElement)
                    return 1;
            return 0;
        }
        // Direct Access to the element data (may return NULL)
        T** GetData()    { return m_pData; }

        // Add
        int Add(T* newElement)
        {
            int nIndex = m_nSize;
            SetAtGrow(nIndex, newElement);
            return nIndex;
        }

        // overloaded operator helpers
        T* operator[](int nIndex) { return GetAt(nIndex); }

        // Potentially growing the array
        void SetAtGrow(int nIndex, T* newElement)
        {
            ASSERT(nIndex >= 0);

            if (nIndex >= m_nSize)
                SetSize(nIndex+1);
            m_pData[nIndex] = newElement;
        }

        // Operations that move elements around
        void InsertAt(int nIndex, T* newElement, int nCount = 1)
        {
            ASSERT(nIndex >= 0);    // will expand to meet need
            ASSERT(nCount > 0);     // zero or negative size not allowed

            if (nIndex >= m_nSize)
            {
                // adding after the end of the array
                SetSize(nIndex + nCount);  // grow so nIndex is valid
            }
            else
            {
                // inserting in the middle of the array
                int nOldSize = m_nSize;
                SetSize(m_nSize + nCount);  // grow it to new size
                // shift old data up to fill gap
                memmove(&m_pData[nIndex+nCount], &m_pData[nIndex],
                    (nOldSize-nIndex) * sizeof(T*));

                // re-init slots we copied from

                memset(&m_pData[nIndex], 0, nCount * sizeof(T*));

            }

            // insert new value in the gap
            ASSERT(nIndex + nCount <= m_nSize);
            while (nCount--)
                m_pData[nIndex++] = newElement;
        }

        void RemoveAt(int nIndex, int nCount = 1)
        {
            ASSERT(nIndex >= 0);
            ASSERT(nCount >= 0);
            ASSERT(nIndex + nCount <= m_nSize);

            // just remove a range
            int nMoveCount = m_nSize - (nIndex + nCount);

            if (nMoveCount)
                memcpy(&m_pData[nIndex], &m_pData[nIndex + nCount],
                    nMoveCount * sizeof(T*));
            m_nSize -= nCount;
        }

        // IndexFrom
        int IndexFrom(T* pElement)
        {
            for(int i=0;i<m_nSize;i++)
                if(m_pData[i] == pElement)
                    return i;
            TRACE("IndexFrom : no element\n");
            return -1;
        }

        // SetSize
        void SetSize(int nNewSize, int nGrowBy = -1)
        {
            ASSERT(nNewSize >= 0);

            if(nGrowBy != -1)
                m_nGrowBy = nGrowBy;  // set new size
            // shrink to nothing
            if(nNewSize == 0)
            {
                delete[] (BYTE*)m_pData;
                m_pData = NULL;
                m_nSize = 0;
                m_nMaxSize = 0;
            }
            else
                // create one with exact size
                if(m_pData == NULL)
                {
                    m_pData = (T**) new BYTE[nNewSize * sizeof(T*)];
                    memset(m_pData, 0, nNewSize * sizeof(T*));  // zero fill
                    m_nSize = nNewSize;
                    m_nMaxSize = nNewSize;
                }
                else
                    if(nNewSize <= m_nMaxSize)
                    {
                        // it fits
                        if (nNewSize > m_nSize)
                        {
                            // initialize the new elements
                            memset(&m_pData[m_nSize], 0, (nNewSize-m_nSize) * sizeof(T*));
                        }
                        m_nSize = nNewSize;
                    }
                    else
                    {
                        // otherwise, grow array
                        int nGrowBy = m_nGrowBy;
                        if (nGrowBy == 0)
                        {
                            // heuristically determine growth when nGrowBy == 0
                            //  (this avoids heap fragmentation in many situations)
                            nGrowBy = min(1024, max(4, m_nSize / 8));
                        }
                        int nNewMax;
                        if (nNewSize < m_nMaxSize + nGrowBy)
                            nNewMax = m_nMaxSize + nGrowBy;  // granularity
                        else
                            nNewMax = nNewSize;  // no slush
                        ASSERT(nNewMax >= m_nMaxSize);  // no wrap around

                        T** pNewData = (T**) new BYTE[nNewMax * sizeof(T*)];
                        // copy new data from old
                        memcpy(pNewData, m_pData, m_nSize * sizeof(T*));
                        // construct remaining elements
                        ASSERT(nNewSize > m_nSize);
                        memset(&pNewData[m_nSize], 0, (nNewSize-m_nSize) * sizeof(T*));
                        // get rid of old stuff (note: no destructors called)
                        delete[] (BYTE*)m_pData;
                        m_pData = pNewData;
                        m_nSize = nNewSize;
                        m_nMaxSize = nNewMax;
                    }
        }

    };

    #endif // _ARRAY_3D_

     

    //********************************************
    // Array3d.h
    //********************************************
    // class CArray3d
    //********************************************
    // pierre.alliez@cnet.francetelecom.fr
    // Created : 30/01/98
    // Modified : 11/03/98
    //********************************************

    #include "stdafx.h"
    #include "Array3d.h"

    //********************************************
    // FreeExtra
    //********************************************
    template<class T>
    void CArray3d<T>::FreeExtra()
    {

        if (m_nSize != m_nMaxSize)
        {
            // shrink to desired size
    #ifdef SIZE_T_MAX
            ASSERT(m_nSize <= SIZE_T_MAX/sizeof(T*));
    #endif
            T** pNewData = NULL;
            if (m_nSize != 0)
            {
                pNewData = (T**) new BYTE[m_nSize * sizeof(T*)];
                // copy new data from old
                memcpy(pNewData, m_pData, m_nSize * sizeof(T*));
            }

            // get rid of old stuff (note: no destructors called)
            delete[] (BYTE*)m_pData;
            m_pData = pNewData;
            m_nMaxSize = m_nSize;
        }
    }

    //** EOF **

  • 相关阅读:
    6种GET和POST请求发送方法
    微信公众平台开发框架推荐
    PHPExcel内存泄漏问题
    7个鲜为人知却超实用的PHP函数
    java调用C程序
    php AES加密 对应Java SHA1PRNG方式加密
    yii插入数据库防并发
    PHPUnit测试
    yii2源码学习笔记(二十)
    yii2源码学习笔记(十九)
  • 原文地址:https://www.cnblogs.com/mazhenyu/p/1692668.html
Copyright © 2011-2022 走看看