zoukankan      html  css  js  c++  java
  • HDOJ 3480 Division


    斜率优化DP。

    。。。

    对数组排序后。dp【i】【j】表示对前j个物品分i段的最少代价,dp【i】【j】= min{ dp【i-1】【k】+(a【k+1】-a【j】)^2 }复杂度m*n^2      斜率优化一下就能够了。

    Division

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 999999/400000 K (Java/Others)
    Total Submission(s): 3008    Accepted Submission(s): 1173


    Problem Description
    Little D is really interested in the theorem of sets recently. There’s a problem that confused him a long time.  
    Let T be a set of integers. Let the MIN be the minimum integer in T and MAX be the maximum, then the cost of set T if defined as (MAX – MIN)^2. Now given an integer set S, we want to find out M subsets S1, S2, …, SM of S, such that



    and the total cost of each subset is minimal.
     

    Input
    The input contains multiple test cases.
    In the first line of the input there’s an integer T which is the number of test cases. Then the description of T test cases will be given. 
    For any test case, the first line contains two integers N (≤ 10,000) and M (≤ 5,000). N is the number of elements in S (may be duplicated). M is the number of subsets that we want to get. In the next line, there will be N integers giving set S.

     

    Output
    For each test case, output one line containing exactly one integer, the minimal total cost. Take a look at the sample output for format.

     

    Sample Input
    2 3 2 1 2 4 4 2 4 7 10 1
     

    Sample Output
    Case 1: 1 Case 2: 18
    Hint
    The answer will fit into a 32-bit signed integer.
     

    Source
     




    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    
    using namespace std;
    
    const int maxn=11000;
    
    int n,m;
    int dp[maxn/2][maxn],a[maxn];
    int q[maxn],head,tail;
    
    int main()
    {
    	int T_T,cas=1;
    	scanf("%d",&T_T);
    	while(T_T--)
    	{
    		scanf("%d%d",&n,&m);
    		for(int i=1;i<=n;i++)
    			scanf("%d",a+i);
    		sort(a+1,a+n+1);
    		for(int i=1;i<=n;i++)
    			dp[1][i]=(a[i]-a[1])*(a[i]-a[1]);
    		for(int i=2;i<=m;i++)
    		{
    		    head=tail=0;
    		    q[tail++]=i-1;
    		    for(int j=i;j<=n;j++)
                {
                    while(head+1<tail)
                    {
                        int p1=q[head];
                        int p2=q[head+1];
                        int x1=a[p1+1],x2=a[p2+1];
                        int y1=dp[i-1][p1]+x1*x1;
                        int y2=dp[i-1][p2]+x2*x2;
                        if((y2-y1)<=(x2-x1)*2*a[j]) head++;
                        else break;
                    }
                    int k=q[head];
                    dp[i][j]=dp[i-1][k]+(a[k+1]-a[j])*(a[k+1]-a[j]);
                    while(head+1<tail)
                    {
                        int p1=q[tail-2],p2=q[tail-1],p3=j;
                        int x1=a[p1+1],x2=a[p2+1],x3=a[p3+1];
                        int y1=dp[i-1][p1]+x1*x1;
                        int y2=dp[i-1][p2]+x2*x2;
                        int y3=dp[i-1][p3]+x3*x3;
                        if((y3-y2)*(x2-x1)<=(y2-y1)*(x3-x2)) tail--;
                        else break;
                    }
                    q[tail++]=j;
                }
    		}
    		printf("Case %d: %d
    ",cas++,dp[m][n]);
        }
    	return 0;
    }
    


  • 相关阅读:
    iscsi一致性的测试验证方法
    ceph各个版本之间参数变化分析
    rgw的rgw_thread_pool_size配置调整
    rgw前端替换civetweb为beast
    配置内网访问的TV
    关于vm.min_free_kbytes的合理设置推测
    rbd的删除回收站功能
    python爬取微博热门话题榜
    Selenium+Pytest自动化测试框架—禅道实战
    python带参数装饰器的两种写法
  • 原文地址:https://www.cnblogs.com/mengfanrong/p/5066344.html
Copyright © 2011-2022 走看看