zoukankan      html  css  js  c++  java
  • HDOJ 3480 Division


    斜率优化DP。

    。。。

    对数组排序后。dp【i】【j】表示对前j个物品分i段的最少代价,dp【i】【j】= min{ dp【i-1】【k】+(a【k+1】-a【j】)^2 }复杂度m*n^2      斜率优化一下就能够了。

    Division

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 999999/400000 K (Java/Others)
    Total Submission(s): 3008    Accepted Submission(s): 1173


    Problem Description
    Little D is really interested in the theorem of sets recently. There’s a problem that confused him a long time.  
    Let T be a set of integers. Let the MIN be the minimum integer in T and MAX be the maximum, then the cost of set T if defined as (MAX – MIN)^2. Now given an integer set S, we want to find out M subsets S1, S2, …, SM of S, such that



    and the total cost of each subset is minimal.
     

    Input
    The input contains multiple test cases.
    In the first line of the input there’s an integer T which is the number of test cases. Then the description of T test cases will be given. 
    For any test case, the first line contains two integers N (≤ 10,000) and M (≤ 5,000). N is the number of elements in S (may be duplicated). M is the number of subsets that we want to get. In the next line, there will be N integers giving set S.

     

    Output
    For each test case, output one line containing exactly one integer, the minimal total cost. Take a look at the sample output for format.

     

    Sample Input
    2 3 2 1 2 4 4 2 4 7 10 1
     

    Sample Output
    Case 1: 1 Case 2: 18
    Hint
    The answer will fit into a 32-bit signed integer.
     

    Source
     




    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    
    using namespace std;
    
    const int maxn=11000;
    
    int n,m;
    int dp[maxn/2][maxn],a[maxn];
    int q[maxn],head,tail;
    
    int main()
    {
    	int T_T,cas=1;
    	scanf("%d",&T_T);
    	while(T_T--)
    	{
    		scanf("%d%d",&n,&m);
    		for(int i=1;i<=n;i++)
    			scanf("%d",a+i);
    		sort(a+1,a+n+1);
    		for(int i=1;i<=n;i++)
    			dp[1][i]=(a[i]-a[1])*(a[i]-a[1]);
    		for(int i=2;i<=m;i++)
    		{
    		    head=tail=0;
    		    q[tail++]=i-1;
    		    for(int j=i;j<=n;j++)
                {
                    while(head+1<tail)
                    {
                        int p1=q[head];
                        int p2=q[head+1];
                        int x1=a[p1+1],x2=a[p2+1];
                        int y1=dp[i-1][p1]+x1*x1;
                        int y2=dp[i-1][p2]+x2*x2;
                        if((y2-y1)<=(x2-x1)*2*a[j]) head++;
                        else break;
                    }
                    int k=q[head];
                    dp[i][j]=dp[i-1][k]+(a[k+1]-a[j])*(a[k+1]-a[j]);
                    while(head+1<tail)
                    {
                        int p1=q[tail-2],p2=q[tail-1],p3=j;
                        int x1=a[p1+1],x2=a[p2+1],x3=a[p3+1];
                        int y1=dp[i-1][p1]+x1*x1;
                        int y2=dp[i-1][p2]+x2*x2;
                        int y3=dp[i-1][p3]+x3*x3;
                        if((y3-y2)*(x2-x1)<=(y2-y1)*(x3-x2)) tail--;
                        else break;
                    }
                    q[tail++]=j;
                }
    		}
    		printf("Case %d: %d
    ",cas++,dp[m][n]);
        }
    	return 0;
    }
    


  • 相关阅读:
    【Selenium IDE】下载安装Chrome和Firefox插件IDE ide了解就行 不是重点 重点是写脚本
    调用接口时,生产环境,路径加斜杠“/”和不加的区别
    WPF 踩坑笔记12 DataGrid触发选中行事件
    WPF 踩坑笔记11 线程取消
    WPF 踩坑笔记10 ListBox异步动态加载
    WPF 踩坑笔记9 直接打印
    思维的体操
    【洛谷 P4213】 【模板】杜教筛(Sum)
    【洛谷 P2257】 YY的GCD(莫比乌斯反演)
    【洛谷 P4980】 【模板】Pólya 定理
  • 原文地址:https://www.cnblogs.com/mengfanrong/p/5066344.html
Copyright © 2011-2022 走看看