zoukankan      html  css  js  c++  java
  • hdu5086——Revenge of Segment Tree

    Revenge of Segment Tree

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 383    Accepted Submission(s): 163


    Problem Description
    In computer science, a segment tree is a tree data structure for storing intervals, or segments. It allows querying which of the stored segments contain a given point. It is, in principle, a static structure; that is, its content cannot be modified once the structure is built. A similar data structure is the interval tree.
    A segment tree for a set I of n intervals uses O(n log n) storage and can be built in O(n log n) time. Segment trees support searching for all the intervals that contain a query point in O(log n + k), k being the number of retrieved intervals or segments.
    ---Wikipedia

    Today, Segment Tree takes revenge on you. As Segment Tree can answer the sum query of a interval sequence easily, your task is calculating the sum of the sum of all continuous sub-sequences of a given number sequence.
     

    Input
    The first line contains a single integer T, indicating the number of test cases.

    Each test case begins with an integer N, indicating the length of the sequence. Then N integer Ai follows, indicating the sequence.

    [Technical Specification]
    1. 1 <= T <= 10
    2. 1 <= N <= 447 000
    3. 0 <= Ai <= 1 000 000 000
     

    Output
    For each test case, output the answer mod 1 000 000 007.
     

    Sample Input
    2 1 2 3 1 2 3
     

    Sample Output
    2 20
    Hint
    For the second test case, all continuous sub-sequences are [1], [2], [3], [1, 2], [2, 3] and [1, 2, 3]. So the sum of the sum of the sub-sequences is 1 + 2 + 3 + 3 + 5 + 6 = 20. Huge input, faster I/O method is recommended. And as N is rather big, too straightforward algorithm (for example, O(N^2)) will lead Time Limit Exceeded. And one more little helpful hint, be careful about the overflow of int.
     

    Source
     

    Recommend
    heyang   |   We have carefully selected several similar problems for you:  5089 5088 5085 5084 5082 
     

    显然枚举全部区间是不可能的,我们得找找规律什么的,能够发现,设全部数的和是sum, S1(区间长度为1)的是sum,S2 = 2 * sum - (a1 + an)
    S3 = 3 * sum - (2 * a1 + a2 + 2 *an + a1)
    再枚举几个就能够找到规律

    所以,总的和里。从左往右看 a1出现了(n-1)*n/2次,a2是(n - 2)*(n - 1)/2次........................
    从右往左看,an出现了(n-1)*n/2次,an-1是(n - 2)*(n - 1)/2次........................

    所以在O(n)的时间里就完毕了计算。注意用__int64以及取模

    #include <map>
    #include <set>
    #include <list>
    #include <stack>
    #include <queue>
    #include <vector>
    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    __int64 a[447100];
    __int64 b[447100];
    const __int64 mod = 1000000007;
    
    int main()
    {
    	int t, n;
    	scanf("%d", &t);
    	while (t--)
    	{
    		scanf("%d", &n);
    		__int64 ans = 0, x;
    		__int64 sum = 0;
    		for (int i = 1; i <= n; i++)
    		{
    			scanf("%I64d", &x);
    			b[i] = x;
    			a[i] = (__int64)(n - i) * (1 + n - i) / 2 % mod;
    			sum += x;
    			sum %= mod;
    		}
    		for (int i = 1; i <= n; i++)
    		{
    			a[i] = (__int64)a[i] * b[i] % mod;
    		}
    		for (int i = n; i >= 1; i--)
    		{
    			a[i] += (__int64)(i - 1) * i  / 2 % mod * b[i] % mod;
    		}
    		ans = (__int64) n * (n + 1) / 2 % mod * sum % mod;
    		for (int i = 1; i <= n; i++)
    		{
    			ans -= a[i];
    			ans %= mod;
    			if (ans < 0)
    			{
    				ans += mod;
    			}
    			ans %= mod;
    		}
    		printf("%I64d
    ", ans);
    	}
    	return 0;
    }


  • 相关阅读:
    ipython是python的交互式shell工具
    [pip]安装和管理python第三方包
    django 文件上传 研究
    matplotlib01
    mysql数据导出为excel文件
    怎么查看mysql的数据库编码格式
    动态图片、图表
    django 生成复杂的 PDF 文件(数据较多时)
    链接sql数据库并输出csv文件
    django生成文件txt、pdf(在生成 PDF 文件之前,需要安装 ReportLab 库)
  • 原文地址:https://www.cnblogs.com/mengfanrong/p/5184272.html
Copyright © 2011-2022 走看看