zoukankan      html  css  js  c++  java
  • HDOJ 5017 Ellipsoid


    第一次尝试模拟退火.....

    Ellipsoid

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 916    Accepted Submission(s): 305
    Special Judge


    Problem Description
    Given a 3-dimension ellipsoid(椭球面)

    your task is to find the minimal distance between the original point (0,0,0) and points on the ellipsoid. The distance between two points (x1,y1,z1) and (x2,y2,z2) is defined as 
     

    Input
    There are multiple test cases. Please process till EOF.

    For each testcase, one line contains 6 real number a,b,c(0 < a,b,c,< 1),d,e,f(0 ≤ d,e,f < 1), as described above. It is guaranteed that the input data forms a ellipsoid.All numbers are fit in double.
     

    Output
    For each test contains one line. Describes the minimal distance. Answer will be considered as correct if their absolute error is less than 10-5.
     

    Sample Input
    1 0.04 0.01 0 0 0
     

    Sample Output
    1.0000000
     

    Source
     


    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    
    using namespace std;
    
    const double eps=1e-8;
    const double r=0.99;
    const int dir_x[8]={0,0,1,-1,1,-1,1,-1};
    const int dir_y[8]={1,-1,0,0,-1,1,1,-1};
    
    double a,b,c,d,e,f;
    
    double DIST(double x,double y,double z)
    {
    	return sqrt(x*x+y*y+z*z);
    }
    
    double getZ(double x,double y)
    {
    	double A=c,B=e*x+d*y,C=a*x*x+b*y*y+f*x*y-1;
    	double delta=B*B-4*A*C;
    	if(delta<0) return 1e60;
    	double z1=(-B+sqrt(delta))/2/A;
    	double z2=(-B-sqrt(delta))/2/A;
    	if(z1*z1<z2*z2) return z1;
    	return z2;
    }
    
    double solve()
    {
    	double step=1;
    	double x=0,y=0,z;
    	while(step>eps)
    	{
    		z=getZ(x,y);
    		for(int i=0;i<8;i++)
    		{
    			double nx=x+dir_x[i]*step;
    			double ny=y+dir_y[i]*step;
    			double nz=getZ(nx,ny);
    			if(nz>1e30) continue;
    			if(DIST(nx,ny,nz)<DIST(x,y,z))
    			{
    				x=nx;y=ny;z=nz;
    			}
    		}
    		step=step*r;
    	}
    	return DIST(x,y,z);
    }
    
    int main()
    {
    	while(scanf("%lf%lf%lf%lf%lf%lf",&a,&b,&c,&d,&e,&f)!=EOF)
    	{
    		printf("%.8lf
    ",solve());
    	}
    	return 0;
    }
    




  • 相关阅读:
    着手写windows下的c语言这本书。
    ASP.NET Web页生命周期和执行的方法
    Windows 控制面板调用命令
    C# 可指定并行度任务调度器
    .NET 实用扩展方法
    C# 读写锁
    WinForm中预览Office文件
    C#方法过滤器
    WinForm动态查询
    .NET ActiveMQ类库
  • 原文地址:https://www.cnblogs.com/mfrbuaa/p/4208930.html
Copyright © 2011-2022 走看看