zoukankan      html  css  js  c++  java
  • POJ 3176-Cow Bowling(DP||记忆化搜索)

    Cow Bowling
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 14210   Accepted: 9432

    Description

    The cows don't use actual bowling balls when they go bowling. They each take a number (in the range 0..99), though, and line up in a standard bowling-pin-like triangle like this: 

              7
    
    
    
            3   8
    
    
    
          8   1   0
    
    
    
        2   7   4   4
    
    
    
      4   5   2   6   5
    Then the other cows traverse the triangle starting from its tip and moving "down" to one of the two diagonally adjacent cows until the "bottom" row is reached. The cow's score is the sum of the numbers of the cows visited along the way. The cow with the highest score wins that frame. 

    Given a triangle with N (1 <= N <= 350) rows, determine the highest possible sum achievable.

    Input

    Line 1: A single integer, N 

    Lines 2..N+1: Line i+1 contains i space-separated integers that represent row i of the triangle.

    Output

    Line 1: The largest sum achievable using the traversal rules

    Sample Input

    5
    7
    3 8
    8 1 0
    2 7 4 4
    4 5 2 6 5

    Sample Output

    30
    数字三角形问题。。能够自底向上坐dp dp[i][j]=ma[i][j]+max(dp[i+1][j],dp[i+1][j+1])
    巨水 。。想当初半年前自己懵懵懂懂的刷dp啥都不懂。。哎  真是个悲伤的故事。。
    #include <algorithm>
    #include <iostream>
    #include <cstring>
    #include <cstdlib>
    #include <string>
    #include <cctype>
    #include <vector>
    #include <cstdio>
    #include <cmath>
    #include <queue>
    #include <stack>
    #include <map>
    #include <set>
    #define ll long long
    #define maxn 360
    #define pp pair<int,int>
    #define INF 0x3f3f3f3f
    #define max(x,y) ( ((x) > (y)) ? (x) : (y) )
    #define min(x,y) ( ((x) > (y)) ? (y) : (x) )
    using namespace std;
    int n,dp[maxn][maxn],ma[maxn][maxn];
    void solve()
    {
    	for(int i=0;i<n;i++)
    		dp[n-1][i]=ma[n-1][i];
    	for(int i=n-2;i>=0;i--)
    		for(int j=0;j<=i;j++)
    			dp[i][j]=max(ma[i][j]+dp[i+1][j],ma[i][j]+dp[i+1][j+1]);
    	printf("%d
    ",dp[0][0]);
    }
    int main()
    {
    	while(~scanf("%d",&n))
    	{
    		for(int i=0;i<n;i++)
    			for(int j=0;j<=i;j++)
    			scanf("%d",&ma[i][j]);
    		memset(dp,0,sizeof(dp));
    		solve();
    	}
    	return 0;
    }

    也能够自顶向下记忆化搜索。。然后状态数组含义都差点儿相同 。。个人觉着搜索比較好写。。。

    #include <algorithm>
    #include <iostream>
    #include <cstring>
    #include <cstdlib>
    #include <string>
    #include <cctype>
    #include <vector>
    #include <cstdio>
    #include <cmath>
    #include <queue>
    #include <stack>
    #include <map>
    #include <set>
    #define ll long long
    #define maxn 360
    #define pp pair<int,int>
    #define INF 0x3f3f3f3f
    #define max(x,y) ( ((x) > (y)) ? (x) : (y) )
    #define min(x,y) ( ((x) > (y)) ? (y) : (x) )
    using namespace std;
    int n,dp[maxn][maxn],ma[maxn][maxn];
    int dfs(int x,int y)
    {
    	if(x==n-1)return ma[x][y];
    	if(dp[x][y]>=0)return dp[x][y];
    	dp[x][y]=0;
    	dp[x][y]+=(ma[x][y]+max(dfs(x+1,y),dfs(x+1,y+1)));
    	return dp[x][y];
    }
    int main()
    {
    	while(~scanf("%d",&n))
    	{
    		for(int i=0;i<n;i++)
    			for(int j=0;j<=i;j++)
    			scanf("%d",&ma[i][j]);
    		memset(dp,-1,sizeof(dp));
    		printf("%d
    ",dfs(0,0));
    	}
    	return 0;
    }

  • 相关阅读:
    Git全局配置备忘
    Wpf之Microsoft.Extensions.DependencyInjection
    Wpf之Interaction.Triggers与Interaction.Behaviors
    Wpf之异步绑定
    Wpf之HandyControls与MaterialDesign混用之DataGrid
    WPF将log4net配置文件设置为资源来保护配置文件
    c# PInvoke根据工程配置自动引用正确的dlls
    Wpf的gRpc的Server/Client
    Python必会的单元测试框架 —— unittest
    网易centos yum源
  • 原文地址:https://www.cnblogs.com/mfrbuaa/p/4390256.html
Copyright © 2011-2022 走看看