zoukankan      html  css  js  c++  java
  • HDU 4336 Card Collector(动态规划-概率DP)

    Card Collector

    Problem Description
    In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, for example, if you collect all the 108 people in the famous novel Water Margin, you will win an amazing award. 

    As a smart boy, you notice that to win the award, you must buy much more snacks than it seems to be. To convince your friends not to waste money any more, you should find the expected number of snacks one should buy to collect a full suit of cards.
     

    Input
    The first line of each test case contains one integer N (1 <= N <= 20), indicating the number of different cards you need the collect. The second line contains N numbers p1, p2, ..., pN, (p1 + p2 + ... + pN <= 1), indicating the possibility of each card to appear in a bag of snacks. 

    Note there is at most one card in a bag of snacks. And it is possible that there is nothing in the bag.
     

    Output
    Output one number for each test case, indicating the expected number of bags to buy to collect all the N different cards.

    You will get accepted if the difference between your answer and the standard answer is no more that 10^-4.
     

    Sample Input
    1 0.1 2 0.1 0.4
     

    Sample Output
    10.000 10.500
     

    Source
     

    Recommend
    zhoujiaqi2010
     

    题目大意:

    有n个卡片,你如今买一包方便面,没包方便面出现当中一个卡片的概率为 p[i] 。问你集齐一套卡片须要的张数的数学期望。


    解题思路:

    概率DP,用位进制0表示这个卡片有了,1表示这个卡片还没有。那么 比如 “3” 用二进制表示 “1 1” 那么 数组 dp[3] 记录的就是 1号卡片和2号卡片都有的情况集齐一套卡片须要的张数的数学期望。

    dp[sum]= ( 1+sum { dp[ sum + (1<<j )] *p[j] }   ) /sum{p[j] }

    当中 ( i&(1<<j) )==0


    解题代码:

    #include <iostream>
    #include <cstdio>
    using namespace std;
    
    const int maxn=(1<<20)+10;
    int n;
    double dp[maxn];
    double p[30];
    
    void solve(){
        int sum=(1<<n)-1;
        dp[sum]=0;
        for(int i=sum-1;i>=0;i--){
            double tmp=0;
            dp[i]=1;
            for(int j=0;j<n;j++){
                if( ( i&(1<<j) )==0 ){
                    dp[i]+=dp[i+(1<<j)]*p[j];
                    tmp+=p[j];
                }
            }
            dp[i]/=tmp;
        }
        printf("%lf
    ",dp[0]);
    }
    
    int main(){
        while(scanf("%d",&n)!=EOF){
            for(int i=0;i<n;i++) scanf("%lf",&p[i]);
            solve();
        }
        return 0;
    }
    





  • 相关阅读:
    Advanced Installer文件和文件夹页面中的临时文件操作
    celery使用方法
    网站高并发之道
    大话程序猿眼里的高并发
    StringTokenizer类的使用
    linux下查看最消耗CPU、内存的进程
    分享10条PHP性能优化的小技巧,帮助你更好的用PHP开发:
    json 除去转义字符以及查看json错误
    关于 redis、memcache、mongoDB 的对比
    QPS 与 TPS 简介
  • 原文地址:https://www.cnblogs.com/mfrbuaa/p/5167129.html
Copyright © 2011-2022 走看看