zoukankan      html  css  js  c++  java
  • HDU 4336 Card Collector(动态规划-概率DP)

    Card Collector

    Problem Description
    In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, for example, if you collect all the 108 people in the famous novel Water Margin, you will win an amazing award. 

    As a smart boy, you notice that to win the award, you must buy much more snacks than it seems to be. To convince your friends not to waste money any more, you should find the expected number of snacks one should buy to collect a full suit of cards.
     

    Input
    The first line of each test case contains one integer N (1 <= N <= 20), indicating the number of different cards you need the collect. The second line contains N numbers p1, p2, ..., pN, (p1 + p2 + ... + pN <= 1), indicating the possibility of each card to appear in a bag of snacks. 

    Note there is at most one card in a bag of snacks. And it is possible that there is nothing in the bag.
     

    Output
    Output one number for each test case, indicating the expected number of bags to buy to collect all the N different cards.

    You will get accepted if the difference between your answer and the standard answer is no more that 10^-4.
     

    Sample Input
    1 0.1 2 0.1 0.4
     

    Sample Output
    10.000 10.500
     

    Source
     

    Recommend
    zhoujiaqi2010
     

    题目大意:

    有n个卡片,你如今买一包方便面,没包方便面出现当中一个卡片的概率为 p[i] 。问你集齐一套卡片须要的张数的数学期望。


    解题思路:

    概率DP,用位进制0表示这个卡片有了,1表示这个卡片还没有。那么 比如 “3” 用二进制表示 “1 1” 那么 数组 dp[3] 记录的就是 1号卡片和2号卡片都有的情况集齐一套卡片须要的张数的数学期望。

    dp[sum]= ( 1+sum { dp[ sum + (1<<j )] *p[j] }   ) /sum{p[j] }

    当中 ( i&(1<<j) )==0


    解题代码:

    #include <iostream>
    #include <cstdio>
    using namespace std;
    
    const int maxn=(1<<20)+10;
    int n;
    double dp[maxn];
    double p[30];
    
    void solve(){
        int sum=(1<<n)-1;
        dp[sum]=0;
        for(int i=sum-1;i>=0;i--){
            double tmp=0;
            dp[i]=1;
            for(int j=0;j<n;j++){
                if( ( i&(1<<j) )==0 ){
                    dp[i]+=dp[i+(1<<j)]*p[j];
                    tmp+=p[j];
                }
            }
            dp[i]/=tmp;
        }
        printf("%lf
    ",dp[0]);
    }
    
    int main(){
        while(scanf("%d",&n)!=EOF){
            for(int i=0;i<n;i++) scanf("%lf",&p[i]);
            solve();
        }
        return 0;
    }
    





  • 相关阅读:
    International Collegiate Programming Contest 2019 Latin American Regional Contests E. Eggfruit Cake(思维/尺取)
    Codeforces Round #673 (Div. 2) C. k-Amazing Numbers(思维)
    2020 计蒜之道 预赛 第一场 A、B
    生成字符画
    我对目前国内教学的看法
    Stm32 调试时发生HardFault_Handler
    python异常处理
    windows nfs客户端配置
    linux服务器删除文件后df -h查看文件系统占比无变化
    python ssh小程序
  • 原文地址:https://www.cnblogs.com/mfrbuaa/p/5167129.html
Copyright © 2011-2022 走看看