zoukankan      html  css  js  c++  java
  • Harris算子以及未来的规划...

    Harris算子以及未来规划...

    找工作的时候,被问到了harris,面试官问梯度矩阵特征值在边缘区域的分布情况。当时答的感觉也没啥问题,但面试官就是在我说出答案后特别诧异.....回来后挺难过.....后来又问了相机标定的流程,我只敢写个相机模型,没怎么答上来相机标定怎么计算。。感觉coding还是不够深入,找到工作后,发现自己很多不足的地方。打算赶紧抢救下。。

    1.Harris 实现,这个应该不难。

    2.多尺度的harris ,Hessian,DoG,HarrisLaplace,HessianLaplace,看看论文和VLFeat 实现下。

    3.相机标定,在看机器人视觉测量与控制这本书,近几天不忙应该能coding一个basic相机标定的算法。

    4.再把三大特征看完 HoG,Harr,LBP

    4.1看下HDR的论文,实现一下算法过程,此外把scaling 图像缩放看一下

    5.项目上面的话,线结构光的可以改进下激光平面标定的算法,用PNP算一下

    6.把PNP的视频看完,还有几篇论文。

    7.做一下知识管理,找工作后发现好的知识管理和高效率很重要。

    8.未来:关注物体检测(FastRCNN和YOLO)人脸识别,以及人脸特征点。以及GIMP的源码。写点linux上跑的图像处理软件。

    9.学习层面的话,先把操作系统,算法设计看完,计算机网络也恶补一下,开始入嵌入式操作系统的坑,最好是把安卓移植过程了解清楚,以及安卓的一些坑。

    10.再长远的话学java,入安卓的坑了,写一点在安卓上跑的app。

    以下是Harris C++源码:

    参考过https://github.com/RonnyYoung/ImageFeatures/blob/master/source/harris.cpp

    在处理非极大抑制上做的蛮好。

    #include <iostream>
    #include <opencv2/core/core.hpp>
    #include <opencv2/highgui/highgui.hpp>
    #include <opencv2/imgproc/imgproc.hpp>
    #include <math.h>
    using namespace std;
    using namespace cv;
    class CmpHarris
    {
    public:
    	CmpHarris(const Mat& img, int threshold = 0.01, float _lamada = 0.04) : thresh(threshold), lamada(_lamada) {
    		if (img.channels() == 3)
    		{
    			cvtColor(img, image, CV_RGB2GRAY);
    			image.convertTo(image, CV_32FC1);
    		}
    		else
    		{
    			image = img.clone();
    			image.convertTo(image, CV_32FC1);
    		}
    		gradx2 = cv::Mat::zeros(img.size(), CV_32FC1);
    		grady2 = cv::Mat::zeros(img.size(), CV_32FC1);
    		gradxy = cv::Mat::zeros(img.size(), CV_32FC1);
    
    	};
    	
    	void CmpHarris::getHarrisRespose(vector<Point2d> &response,Mat& res);
    	~CmpHarris()
    	{
    		
    	}
    private:
    	Mat image;
    	Mat gradx2;
    	Mat grady2;
    	Mat gradxy;
    	float thresh;
    	float lamada;
    	int cmpSobel(Mat& image, Mat& gardx2, Mat& gardy2, Mat& gardxy);
    	int Harris(vector<Point2d> &response,Mat& res, Mat& gradx2, Mat& grady2, Mat & gradxy, float thresh, float lamada);
    };
    int CmpHarris::cmpSobel(Mat& image, Mat& gardx2, Mat& gardy2, Mat& gradxy)
    {
    	int width = image.cols;
    	int height = image.rows;
    	Mat gradX, gradY;
    	gradX = Mat::zeros(gradx2.size(), CV_32FC1);
    	gradY = Mat::zeros(grady2.size(), CV_32FC1);
    	for (int i = 1; i < height - 1; i++)
    	{
    		float* data = image.ptr<float>(i);
    		float* gradxd = gradX.ptr<float>(i);
    		float* gradyd = gradY.ptr<float>(i);
    		float* updata = image.ptr<float>(i - 1);
    		float* downdata = image.ptr<float>(i + 1);
    		for (int j = 1; j < width - 1; j++)
    		{
    			float gradx, grady;
    			float a00, a01, a02, a10, a12, a20, a21, a22;
    			a00 = updata[j - 1]; a01 = updata[j]; a02 = updata[j + 1];
    			a10 = data[j - 1]; a12 = data[j + 1];
    			a20 = downdata[j - 1]; a21 = downdata[j]; a22 = downdata[j + 1];
    			/*gradx = -a00 - a10 * 2 - a20 + a02 + 2 * a12 + a22;
    			grady = -a00 - a01 * 2 - a02 + a20 + 2 * a21 + a22;*/
    			gradx = -a00 - a10 * 2 - a20 + a02 + 2 * a12 + a22;
    			grady = -a00 - a01 * 2 - a02 + a20 + 2 * a21 + a22;
    			gradxd[j] = gradx;
    			gradyd[j] = grady;
    		}
    	}
    	gradx2 = gradX.mul(gradX);
    	grady2 = gradY.mul(gradY);
    	gradxy = gradX.mul(gradY);
    	return 1;
    }
    int CmpHarris::Harris(vector<Point2d> &response,Mat& res, Mat& gradx2, Mat& grady2, Mat & gradxy,float thresh, float lamada)
    {
    	//首先进行行卷积
    
    	Mat gaussKernel = getGaussianKernel(7, 2);
    	Mat HarrisResponse;
    	HarrisResponse = Mat::zeros(gradx2.size(),CV_32FC1);
    	filter2D(gradx2, gradx2, CV_32FC1, gaussKernel);
    	filter2D(grady2, grady2, CV_32FC1, gaussKernel);
    	filter2D(gradxy, gradxy, CV_32FC1, gaussKernel);
    	for (int i = 0; i < gradx2.rows; i++)
    	{
    		float* dataRes = HarrisResponse.ptr<float>(i);
    		for (int j = 0; j <  gradx2.cols; j++)
    		{
    			float sumGradx2, sumGrady2, sumGradxy;
    			sumGradx2 = sumGrady2 = sumGradxy = 0;
    			sumGradx2 = gradx2.at<float>(i, j);
    			sumGrady2 = grady2.at<float>(i, j);
    			sumGradxy = gradxy.at<float>(i, j);
    			float det_m = sumGradx2 *sumGrady2 - sumGradxy  * sumGradxy;
    			float trace_m = sumGradx2 + sumGrady2;
    			dataRes[j] = det_m - lamada * trace_m * trace_m;
    		}
    	}
    	//NMS + aaaaaaaaaaaaaa
    	double maxResponse = 0;
    	minMaxLoc(HarrisResponse, NULL, &maxResponse,NULL,NULL);
    	Mat dilated;
    	Mat localMax;
    
    	//膨胀就是求局部最大值的操作,核B与图形卷积,
    	//即计算核B覆盖的区域的像素点的最大值,
    	//并把这个最大值赋值给参考点指定的像素
    	dilate(HarrisResponse, dilated, Mat());
    
    	compare(HarrisResponse, dilated, localMax, CMP_EQ);
    
    	Mat cornerMap;
    	double qualityLevel = 0.01;
    	double threshs = qualityLevel * maxResponse;
    	cornerMap = HarrisResponse > threshs;
    	bitwise_and(cornerMap, localMax, res);
    	for (int i = 0; i < res.rows; i++)
    	{
    		uchar* p = res.ptr<uchar>(i);
    		for (int j = 0; j < res.cols; j++)
    		{
    			if (p[j])
    			{
    				response.push_back(Point2d(i, j));
    			}
    		}
    	 }
    	/*imshow("cv1", dilated);
    	imshow("c2", HarrisResponse);
    	imshow("cv3", localMax);
    	imshow("cv4", res);
    	waitKey(0);
    	*/
    
    	return 1;
    }
    
    void CmpHarris::getHarrisRespose(vector<Point2d> &response,Mat& res)
    {
    	cmpSobel(this->image, this->gradx2, this->grady2, this->gradxy);
    	Harris(response,res, this->gradx2, this->grady2, this->gradxy, this->thresh, this->lamada);
    }
    
    int main(int argc, char **argv) {
    	cv::Mat im;
    	Mat image, res, res_norm, res_norm_scale;
    	vector<Point2d> HarrisRespose;
    	im = cv::imread("D://2.jpg");
    	CmpHarris harris(im, 0.01, 0.04);
    	harris.getHarrisRespose(HarrisRespose,res);
    	if (!HarrisRespose.empty())
    	{
    		for (int i = 0; i < HarrisRespose.size(); i++)
    		{
    			Point FeatPoint(HarrisRespose[i].y, HarrisRespose[i].x);
    			circle(im, FeatPoint, 1, CV_RGB(0, 255, 0), 2, 0, 0);
    		}
    	}
    	namedWindow("harris");
    	imshow("harris", im);
    	waitKey(0);
    	return 0;
    }
    

    上图是C++版本生成harris角点

    下面是matlab版本的:

    % in_image-待检测的rgb图像数组
    % a--角点参数响应,取值范围:0.04~0.06
    % [posr,posc]-角点坐标
    in_image = imread('D:\2.jpg');
    a = 0.04;
    in_image=rgb2gray(in_image);
    I=double(in_image);
    %%%%计算xy方向梯度%%%%%
    
    fx=[-1,0,1];%x方向梯度模板
    Ix=filter2(fx,I);%x方向滤波
    fy=[-1;0;1];%y方向梯度模板(注意是分号)
    Iy=filter2(fy,I);
    %%%%计算两个方向梯度的乘积%%%%%
    Ix2=Ix.^2;
    Iy2=Iy.^2;
    Ixy=Ix.*Iy;
    %%%%使用高斯加权函数对梯度乘积进行加权%%%%
    %产生一个7*7的高斯窗函数,sigma值为2
    h=fspecial('gaussian',[7,7],2);
    IX2=filter2(h,Ix2);
    IY2=filter2(h,Iy2);
    IXY=filter2(h,Ixy);
    %%%%%计算每个像元的Harris响应值%%%%%
    [height,width]=size(I);
    R=zeros(height,width);
    %像素(i,j)处的Harris响应值
    for i=1:height
        for j=1:width
            M=[IX2(i,j) IXY(i,j);IXY(i,j) IY2(i,j)];
            R(i,j)=det(M)-a*(trace(M))^2;
        end
    end
    
    %%%%%去掉小阈值的Harris值%%%%%
    Rmax=max(max(R));
    %阈值
    t=0.01*Rmax;
    for i=1:height
        for j=1:width
            if R(i,j)<t
                R(i,j)=0;
            end
        end
    end
    figure
    imshow(R);
    hold on
    %%%%%进行3*3领域非极大值抑制%%%%%%%%%
    corner_peaks=imregionalmax(R);
    %imregionalmax对二维图片,采用8领域(默认,也可指定)查找极值,三维图片采用26领域
    %极值置为1,其余置为0
    num=sum(sum(corner_peaks));
    %%%%%%显示所提取的Harris角点%%%%
    [posr,posc]=find(corner_peaks==1);
    figure
    imshow(in_image);
    hold on
    for i=1:length(posr)
        plot(posc(i),posr(i),'r+');
    end
    

    上图是matlab生成的harris角点

  • 相关阅读:
    BZOJ 2743: [HEOI2012]采花( 离线 + BIT )
    BZOJ 1031: [JSOI2007]字符加密Cipher( 后缀数组 )
    BZOJ 1717: [Usaco2006 Dec]Milk Patterns 产奶的模式( 二分答案 + 后缀数组 )
    HDU 2602 Find a way BFS搜索
    HDU 1495 非常可乐 BFS搜索
    UVA 11624 Fire! BFS搜索
    FZU2150 Fire Game BFS搜索
    POJ3414 Pots BFS搜素
    POJ3087 Shuffle'm Up 简单模拟
    POJ 3126 Prime Path BFS搜索
  • 原文地址:https://www.cnblogs.com/miki-52/p/7593942.html
Copyright © 2011-2022 走看看