zoukankan      html  css  js  c++  java
  • [CV] 计算机视觉拉普拉斯金字塔融合图像 Laplacian Pyramid

    前提

    多尺度表达

    • 物体在不同的观测尺度下不同的表现方式

    概念

    高斯金字塔(Gaussian Pyramid)

    主要应用于下采样,最下层为原始图像,越上层尺度越小

    高斯核(Gaussian Kernel)

    [g(sigma)=frac{1}{2 pi sigma^{2}} exp left(-frac{x^{2}+y^{2}}{2 sigma^{2}} ight) ]

    1. 高斯核用作平滑图像时,粗糙尺度只是细尺度图像的简化表达,该特性被称为causality

    2. Semi-group特性,多次卷积等于一次大尺度高斯滤波器平滑的结果

      [gleft(sigma_{1} ight) * ldots * gleft(sigma_{n} ight) * f(x, y)=gleft(sigma_{1}+ldots+sigma_{n} ight) * f(x, y) ]

    多尺度表达

    (L(x,y,sigma))其中(x)(y)为空间位置信息,(sigma)为尺度

    [egin{array}{l} L_{0}(x, y, 0)=f(x, y) \ L_{1}(x, y, sigma)=g(sigma) * L_{0}(x, y ; 0) \ L_{2}(x, y ; 2 sigma)=g(sigma) * L_{1}(x, y ; sigma) \ vdots \ L_{n}(x, y ; n sigma)=g(sigma) * L_{n-1}(x, y ;(n-1) sigma) end{array} ]

    高斯函数可分离性可得:

    [egin{array}{l} g(x ; sigma)=left[frac{1}{sqrt{2 pi} sigma} exp left(-frac{x^{2}}{2 sigma^{2}} ight) ight], quad g(x ; sigma)=left[frac{1}{sqrt{2 pi} sigma} exp left(-frac{y^{2}}{2 sigma^{2}} ight) ight] \ g(x, y ; sigma)=g(x ; sigma) imes g(y ; sigma) end{array} ]

    可以先沿x轴卷积再沿着y轴卷积

    [egin{array}{l} L_{x}(x, y ; sigma)=g(x ; sigma) * f(x, y) \ L(x, y ; sigma)=g(y ; sigma) * L_{x}(x, y ; sigma) end{array} ]

    (sigma)如何选取呢?(示例取1,即标准正态分布)

    根据正态分布的曲线(sigma),标准差越小中心越凸,反之越平

    例: 5*1的高斯核((sigma)=1),归一化后

    g(x)=[0.05,0.25,0.4,0.25,0.05]

    至少选取5个才能表达出一维高斯函数

    DOG金字塔

    即高斯金字塔当前层相邻尺度倍数sigma的图像之差(尺寸不变)

    拉普拉斯金字塔(Laplacian Pyramid)

    高斯金字塔当前层与上一层进行上采样之差

    应用:图片融合

    fzu

    通过截图软件将上图截出右图:

    fzu2

    左图取(256*256),右图也取(256*256)融合

    1. 构建需要融合两图的拉普拉斯金字塔(Laplacian Pyramid)——最后一层为高斯金字塔的最后一层

      class GaussianPyramid():
          '''
              Gaussion Pyramid
          '''
      
          def __init__(self):
      
          def calc_pyramid(self, origin: np.ndarray, size: int = 5):
              '''
                  calculate gaussian pyramid
              '''
              pyramid = [np.copy(origin)]
              for s in range(size):
                  # cv2 origin algorithm
                  pyramid.append(cv2.pyrDown(pyramid[-1]))
              # cache
              self.pyramid: List[np.ndarray] = pyramid
              return self
      
      def loadPyramid(source: str, prefix="first") -> Tuple[List[np.ndarray]]:
          global resource_path, DEBUG
          img = cv2.imread(path.join(resource_path, source))
          if img.shape[0] < 256 or img.shape[1] < 256:
              raise "the shape of image must be greater than (256,256)"
          img = img[:256, :256].astype(np.float64)
          # separate from bgr channels
          # b, g, r = img[:, :, 0], img[:, :, 1], img[:, :, 2]
          # blue_gaussian = GaussianPyramid().calc_pyramid(b).pyramid
          # red_gaussian = GaussianPyramid().calc_pyramid(r).pyramid
          # green_pyramid = GaussianPyramid().calc_pyramid(g).pyramid
          gaussian = GaussianPyramid().calc_pyramid(img).pyramid
          showImgs(gaussian, title="{}_gaussian".format(prefix))
          # showBgr(blue_gaussian, green_pyramid, red_gaussian,
          #         title="{}_gaussian".format(prefix))
          laplacian = LaplacianPyramid(gaussian).pyramid
          showImgs(laplacian,
                   title="{}_laplacian".format(prefix))
      
          return laplacian
      
      # 主程序
      pyramid = loadPyramid("fzu.jpeg")
               
      second_pyramid = loadPyramid("fzu2.png", "second")
      
    2. 创建融合掩膜(掩膜和它的补集),使用融合掩膜构造高斯金字塔(Gaussian Pyramid)

      # create mask left 50%
      mask = np.ones((256, 128, 3), dtype=np.float64)
      mask = cv2.copyMakeBorder(
          mask, 0, 0, 0, 128, cv2.BORDER_CONSTANT, value=[0, 0, 0])
      
      # create mask gaussian pyramid
      mask_pyramid = GaussianPyramid().calc_pyramid(mask).show("mask").pyramid
      
    3. 将1步的拉斯拉斯金字塔与掩膜的高斯金字塔对应相乘

      for index in range(len(pyramid)):
          pyramid[index] = np.multiply(pyramid[index], mask_pyramid[index])
      for i in range(len(second_pyramid)):
          second_pyramid[i] = np.multiply(second_pyramid[i], 1-mask_pyramid[i])
      
    4. 将两图的拉普拉斯金字塔相加形成混合拉普拉斯金字塔

      blendPyramid = []
      for i in range(len(pyramid)):
          blendPyramid.append(pyramid[i]+second_pyramid[i])
      
    5. 从混合拉普拉斯金字塔重构图像

      def restructPyramid(pyramid: List[np.ndarray]) -> np.ndarray:
          img = pyramid[-1]
          for index in range(len(pyramid)-2, -1, -1):
              img = cv2.pyrUp(img, dstsize=tuple(
                  pyramid[index].shape[:2]))+pyramid[index]
          return img.astype(np.uint8)
      
          # show 
          cv2.imshow("restruct",restructPyramid(blendPyramid))
      
          cv2.waitKey(0)
      

    实验结果:

    image-20210415215457793

    Reference:

    pyrDown/Up原理 https://zhuanlan.zhihu.com/p/92118785

    Laplacian 融合图像 https://www.jianshu.com/p/3185cca3f082

    PS:

    注意:浮点数和整形转换可能造成全白

    根据原理写的对于单通道的上采样和下采样实现

    class GaussianFilter():
        '''
            Gaussian Filter
        '''
    
        def __init__(self, size: int = 5, sigma: int = 1):
            if (size & 1) != 1 or size < 5:
                raise "size must be odd number and greater than 5"
            self.size = size  # Kernel Size
            self.sigma = sigma  # Standard
            self.kernel = self._calc_kernel()  # Gaussian Kernel
    
        def _gaussian_function(self, x: int) -> float:
            '''
                g(sigma) = 1/2pisqr(sigma^2)exp(-(x^2)/sqr(sigma))
            '''
            return 1/(2*np.pi*np.square(self.sigma))*np.exp(-(np.square(x))/(2*np.square(self.sigma)))
    
        def _calc_kernel(self) -> np.ndarray:
            '''
                calculate gaussian kernel
            '''
            kernel = np.zeros(self.size, dtype=np.float64)
            for x in range(self.size):
                kernel[x] = self._gaussian_function(x-self.size//2)
            return np.divide(kernel, np.sum(kernel))
    
        def down(self, origin: np.ndarray) -> np.ndarray:
            '''
                apply gaussian filter
            '''
            origin = origin.astype(np.float64)
            copy = np.copy(origin)
            rows, cols = origin.shape[0], origin.shape[1]
            length = self.size//2
            # x axis
            for row in range(rows):
                for col in range(length, cols-length):
                    copy[row][col] = np.sum(np.multiply(
                        origin[row, col-length:col+length+1].flatten(), self.kernel))
            origin = copy
            copy = np.copy(copy)
            # y axis
            for row in range(length, rows-length):
                for col in range(cols):
                    copy[row][col] = np.sum(np.multiply(
                        origin[row-length:row+length+1, col].flatten(), self.kernel))
            return copy[::2, ::2].astype(np.uint8)  # remove even pixels
    
        def up(self, origin: np.ndarray) -> np.ndarray:
            '''
                apply gaussian filter
            '''
            origin = origin.astype(np.float64)
            copy = np.copy(origin)
            rows, cols = origin.shape[0], origin.shape[1]
            # expand even row
            for row in range(rows):
                copy = np.insert(copy, row*2+1, values=0, axis=0)
            # expand even col
            for col in range(cols):
                copy = np.insert(copy, col*2+1, values=0, axis=1)
            origin = np.copy(copy)
            rows, cols = origin.shape[0], origin.shape[1]
            length = self.size//2
            # x axis
            for row in range(rows):
                for col in range(length, cols-length):
                    copy[row][col] = np.sum(np.multiply(
                        origin[row, col-length:col+length+1].flatten(), self.kernel))
            origin = copy
            copy = np.copy(copy)
            # y axis
            for row in range(length, rows-length):
                for col in range(cols):
                    copy[row][col] = np.sum(np.multiply(
                        origin[row-length:row+length+1, col].flatten(), self.kernel))
            copy *= 4
            return copy.astype(np.uint8)
    
  • 相关阅读:
    Java基础50道经典练习题(23)——求岁数
    Java基础50道经典练习题(22)——递归求阶乘
    团队第一阶段冲刺04
    团队第一阶段冲刺03
    团队第一阶段冲刺02
    团队第一阶段冲刺01
    软件工作进度01
    软团队项目01之电梯演讲视频
    团队项目1
    C语言动静态链接库使用(笔记)
  • 原文地址:https://www.cnblogs.com/minskiter/p/14664661.html
Copyright © 2011-2022 走看看