zoukankan      html  css  js  c++  java
  • SGU 169 numbers 数学

    169.Numbers
    Let us call P(n) - the product of all digits of number n (in decimal notation). 
    For example, P(1243)=1*2*4*3=24; P(198501243)=0. 
    Let us call n to be a good number, if (p(n)<>0) and (n mod P(n)=0). 
    Let us call n to be a perfect number, if both n and n+1 are good numbers. 

    You are to write a program, which, given the number K, counts all such 
    numbers n that n is perfect and n contains exactly K digits in decimal notation.

    Input
    Only one number K (1<=K<=1000000) is written in input.

    Output
    Output the total number of perfect k-digit numbers.

    Sample test(s)

    Input
     
     
    1
     
     

    Output
     
     
    8

    题意:一道很有意思的题,规律是通过计算,得到k位数除个位数之外,所有的非个位数都为1,所以只需看最后一位的情况与前面组成的数能构成多少perfect number

    假设n的各个位数为a1,a2···ak,那么n+1的各个位数为a1,a2···ak+1

    因为要求n mod P(n)=0,所以有n=s1*a1*a2···*ak,n+1=s2*a1*a2···*(ak+1)

    在此处s1与s2因为n mod P(n)=0所以肯定是整数(因为n一定是P(n)的m倍),所以有1=[s2*(ak+1)-s1*ak]*a1*a2···ak-1

    由此可得出a1,a2···肯定为1

    设个位数为x

    x=1,   perfect numbers

    x=2,   当6|(k-1)时是perfect numbers

    x=3,不是

    x=4,不是

    x=5,当3|(k-1)时是perfect numbers

    x=6,当6|(k-1)时是perfect numbers

    x=7,不是

    x=8,不是

    代码:

     1 #include"bits/stdc++.h"
     2 using namespace std;
     3 int k;
     4 int main()
     5 {
     6     while(scanf("%d",&k)!=EOF)
     7     {
     8         k--;
     9         int ans=1;
    10         if(!k) puts("8");
    11         else
    12         {
    13             if(k%3==0) ans+=2;
    14             if(k%6==0) ans++;
    15             pi(ans);
    16         }
    17     }
    18     return 0;
    19 }
  • 相关阅读:
    登录界面
    冲刺一阶段(5月9日)-个人总结07
    冲刺一阶段(5月8日)-个人总结06
    冲刺一阶段(5月7日)-个人总结05
    冲刺一阶段(5月6日)-个人总结04
    冲刺一阶段(5月5日)-个人总结03
    冲刺一阶段(5月4日)-个人总结02
    第一阶段冲刺--个人总结01(忘记发了)
    软件需求分析(补发)
    第八周工作进程表
  • 原文地址:https://www.cnblogs.com/mj-liylho/p/8962320.html
Copyright © 2011-2022 走看看