Minimum Inversion Number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 20162 Accepted Submission(s):
12110
Problem Description
The inversion number of a given number sequence a1, a2,
..., an is the number of pairs (ai, aj) that satisfy i < j and ai >
aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case
consists of two lines: the first line contains a positive integer n (n <=
5000); the next line contains a permutation of the n integers from 0 to
n-1.
Output
For each case, output the minimum inversion number on a
single line.
Sample Input
10
1 3 6 9 0 8 5 7 4 2
Sample Output
16
Author
CHEN, Gaoli
逆序数的概念:在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那末它们就称为一个逆序。
一个排列中逆序的总数就称为这个排列的逆序数。
思路:先暴力求出开始时的逆序数,然后会有一个性质:每次把末尾的数掉到序列前面时,减少的逆序对数为n-1-a[i] ,增加的逆序对数为a[i] ,所以求出其他情况时的逆序数。
一个排列中逆序的总数就称为这个排列的逆序数。
思路:先暴力求出开始时的逆序数,然后会有一个性质:每次把末尾的数掉到序列前面时,减少的逆序对数为n-1-a[i] ,增加的逆序对数为a[i] ,所以求出其他情况时的逆序数。
1 #include<cstdio> 2 3 int t[5010]; 4 int n,ans,sum; 5 int main() 6 { 7 while (scanf("%d",&n)!=EOF) 8 { 9 sum = 0; 10 for (int i=1; i<=n; ++i) 11 scanf("%d",&t[i]); 12 for (int i=1; i<n; ++i) 13 for (int j=i+1; j<=n; ++j) 14 if (t[i]>t[j]) sum++; 15 ans = sum; 16 for (int i=n; i>=1; --i) 17 { 18 sum -= n-1-t[i]; 19 sum += t[i]; 20 if (sum < ans) ans = sum; 21 } 22 printf("%d ",ans); 23 } 24 return 0; 25 }