zoukankan      html  css  js  c++  java
  • HDU 3037:Saving Beans

    Saving Beans

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 6419    Accepted Submission(s): 2579

    Problem Description

    Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel family thinks that they have to solve a problem. They suppose that they will save beans in n different trees. However, since the food is not sufficient nowadays, they will get no more than m beans. They want to know that how many ways there are to save no more than m beans (they are the same) in n trees.

    Now they turn to you for help, you should give them the answer. The result may be extremely huge; you should output the result modulo p, because squirrels can’t recognize large numbers.
     

    Input

    The first line contains one integer T, means the number of cases.

    Then followed T lines, each line contains three integers n, m, p, means that squirrels will save no more than m same beans in n different trees, 1 <= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to be a prime.
     

    Output

    You should output the answer modulo p.
     

    Sample Input

    2 1 2 5 2 1 5
     

    Sample Output

    3 3
     

    Hint

    Hint For sample 1, squirrels will put no more than 2 beans in one tree. Since trees are different, we can label them as 1, 2 … and so on. The 3 ways are: put no beans, put 1 bean in tree 1 and put 2 beans in tree 1. For sample 2, the 3 ways are: put no beans, put 1 bean in tree 1 and put 1 bean in tree 2.
     
     

    code

     1 #include<cstdio>
     2 
     3 typedef long long LL;
     4 const int N = 1000010;
     5 
     6 LL n,m,p,f[N];
     7 
     8 void init(int x) {
     9     f[0] = 1;
    10     for (int i=1; i<=x; ++i) f[i] = (i * f[i-1]) % x;
    11 }
    12 LL ksm(LL a,LL b) {
    13     LL ans = 1;
    14     while (b) {
    15         if (b & 1) ans = (ans * a) % p;
    16         b >>= 1;
    17         a = (a * a) % p;
    18     }
    19     return ans;
    20 }
    21 LL C(LL n,LL m) {
    22     if (m > n) return 0;
    23     return (f[n] * ksm(f[m],p-2)) % p * ksm(f[n-m],p-2) % p;
    24 }
    25 LL Lucas(LL n,LL m) {
    26     if (m == 0) return 1;
    27     else return (C(n%p,m%p) * Lucas(n/p,m/p)) % p;
    28 }
    29 int main() {
    30     int T;
    31     scanf("%d",&T);
    32     while (T--) {
    33         scanf("%lld%lld%lld",&n,&m,&p);
    34         init(p);
    35         printf("%lld
    ",Lucas(n+m,m));
    36     }
    37     return 0;
    38 }
  • 相关阅读:
    基于WebForm+EasyUI的业务管理系统形成之旅 -- 构建Web界面(Ⅴ)
    基于WebForm+EasyUI的业务管理系统形成之旅 -- 数据统计(Ⅳ)
    基于WebForm+EasyUI的业务管理系统形成之旅 -- 首页快捷方式(Ⅲ)
    基于WebForm+EasyUI的业务管理系统形成之旅 -- 登录窗口(Ⅱ)
    基于WebForm+EasyUI的业务管理系统形成之旅 -- 系统设置(Ⅰ)
    基于WebForm+EasyUI的业务管理系统形成之旅 -- 总体介绍
    LeetCode-Implement Queue using Stacks
    LeetCode-Implement Stack Using Queues
    LeetCode-Count Primes
    LeetCode-Reverse Bits
  • 原文地址:https://www.cnblogs.com/mjtcn/p/8413520.html
Copyright © 2011-2022 走看看