1.buffer使用image的方式:Horizontal 与 Vertical 算法一样, 共需30ms,wait time 19ms.
const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST; __kernel void ImageGaussianFilterHorizontal(__read_only image2d_t source, // Source image __write_only image2d_t dest, // Intermediate dest image const int imgWidth , // Image width const int imgHeight) { const int y = get_global_id(0); if(y>=(imgHeight)) return; const float m_nFilter[11] = {1/256.0,4/256.0,8/256.0,16/256.0,32/256.0,134/256.0,32/256.0,16/256.0,8/256.0,4/256.0,1/256.0}; const int s = 11; const int nStart = 5; float lines[11]; for(int i=0;i<11;i++) lines[i] = read_imagef( source, sampler, (int2) (i-5, y) ).x; for(int j=0;j<imgWidth;){ float sum = lines[nStart] * m_nFilter[nStart]; #define GaussianTwoLines(m) sum += ( (lines[m] + lines[s-1-m])*m_nFilter[m] ); GaussianTwoLines(0) GaussianTwoLines(1) GaussianTwoLines(2) GaussianTwoLines(3) GaussianTwoLines(4) write_imagef( dest, (int2) (j, y), sum ); for(int i = 0; i<s-1; i++) lines[i] = lines[i+1]; j++; lines[s-1] = read_imagef( source, sampler, (int2) (j+5, y) ).x; } } __kernel void ImageGaussianFilterVertical(__read_only image2d_t source, // Source image __write_only image2d_t dest, const int imgWidth , const int imgHeight) { const int x = get_global_id(0); if(x>=(imgWidth)) return; const float m_nFilter[11] = {1/256.0,4/256.0,8/256.0,16/256.0,32/256.0,134/256.0,32/256.0,16/256.0,8/256.0,4/256.0,1/256.0}; const int s = 11; const int nStart = 5; float lines[11]; for(int i=0;i<11;i++) lines[i] = read_imagef( source, sampler, (int2) (x ,i-5) ).x; for(int j=0;j<imgHeight;){ float sum = lines[nStart] * m_nFilter[nStart]; #define GaussianTwoLines(m) sum += ( (lines[m] + lines[s-1-m])*m_nFilter[m] ); GaussianTwoLines(0) GaussianTwoLines(1) GaussianTwoLines(2) GaussianTwoLines(3) GaussianTwoLines(4) write_imagef( dest, (int2) (x, j), sum ); for(int i = 0; i<s-1; i++) lines[i] = lines[i+1]; j++; lines[s-1] = read_imagef( source, sampler, (int2) (x,j+5) ).x; } }
2.只运行 Horizontal 19ms,wait time 19ms. 注释掉 write_imagef 2.4ms(wait time,run time都是0.0xms)(更新:sum计算被优化,0.x ms就是读image的时间).
a.顺序调整为:
lines[s-1] = read_imagef( source, sampler, (int2) (j+5, y) ).x;
write_imagef( dest, (int2) (j-1, y), sum );
16.9ms,很奇怪sum用固定的0,0.2替代时间只有3.9ms?????把计算部分注释掉,只读写imgage,也是3.9ms, 计算sum的部分被编译器优化掉了?
b. if(sum>0)
lines[s-1] = read_imagef( source, sampler, (int2) (j+5, y) ).x;
write_imagef( dest, (int2) (j-1, y), 0.2 );
如此测试,17ms,看来是sum的计算被优化掉了.
c.if(sum>=0)
j++;
//lines[s-1] = read_imagef( source, sampler, (int2) (j+5, y) ).x;
//write_imagef( dest, (int2) (j-1, y), sum );
只计算,5.7ms,但还是wait time 5.7ms???
3.使用float16 vector 计算,总共耗时15.6 ms,wait time 9.3ms,rum time 6.3ms.使用 __attribute__ 能减少1ms以内.其中Horizontal:wait time 9.4ms,rum time 0.008ms ,Vertical:wait time 0.07ms,rum time 6.4ms.
不知道为什么使用fma指令替代sum+= ,需要近2s,而且localWorksize最大只能32.
使用half16 精度,反而还要17ms,而且结果有1-2的误差。
const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST; __kernel __attribute__((work_group_size_hint(64,1,1))) void ImageGaussianFilterHorizontal(__read_only image2d_t source, // Source image __write_only image2d_t dest, // Intermediate dest image const int imgWidth , // Image width const int imgHeight) { const int y = get_global_id(0); if(y>=(imgHeight)) return; const float m_nFilter[11] = {1/256.0,4/256.0,8/256.0,16/256.0,32/256.0,134/256.0,32/256.0,16/256.0,8/256.0,4/256.0,1/256.0}; #define r(xc,y) read_imagef( source, sampler, (int2) (xc, y) ).x #define r16(x,y) (float16)( r(x,y),r(x+1,y),r(x+2,y),r(x+3,y),r(x+4,y),r(x+5,y),r(x+6,y),r(x+7,y), r(x+8,y),r(x+9,y),r(x+10,y),r(x+11,y),r(x+12,y),r(x+13,y),r(x+14,y),r(x+15,y)) #define w16(x,y,sum) write_imagef( dest, (int2) (x, y), sum.s0 );write_imagef( dest, (int2) (x+1, y), sum.s1 ); write_imagef( dest, (int2) (x+2, y), sum.s2 );write_imagef( dest, (int2) (x+3, y), sum.s3 ); write_imagef( dest, (int2) (x+4, y), sum.s4 );write_imagef( dest, (int2) (x+5, y), sum.s5 ); write_imagef( dest, (int2) (x+6, y), sum.s6 );write_imagef( dest, (int2) (x+7, y), sum.s7 ); write_imagef( dest, (int2) (x+8, y), sum.s8 );write_imagef( dest, (int2) (x+9, y), sum.s9 ); write_imagef( dest, (int2) (x+10, y), sum.sa );write_imagef( dest, (int2) (x+11, y), sum.sb ); write_imagef( dest, (int2) (x+12, y), sum.sc );write_imagef( dest, (int2) (x+13, y), sum.sd ); write_imagef( dest, (int2) (x+14, y), sum.se );write_imagef( dest, (int2) (x+15, y), sum.sf ); float16 line0 = r16(-5,y); for(int j=0;j<imgWidth;){ float16 line1 = r16(j-5+16,y); float16 temp0; float16 temp1; temp0 = line0; temp1.s0123 = line0.sabcd; temp1.s45 = line0.sef; temp1.s67 = line1.s01; temp1.s89abcdef = line1.s23456789; float16 sum = ( temp0 + temp1 ) * m_nFilter[0]; temp0.s0123456789abcdef = temp0.s123456789abcdeff; temp0.sf = line1.s0; temp1.s0123456789abcdef = temp1.s00123456789abcde; temp1.s0 = line0.s9; sum += ( temp0 + temp1 ) * m_nFilter[1]; temp0.s0123456789abcdef = temp0.s123456789abcdeff; temp0.sf = line1.s1; temp1.s0123456789abcdef = temp1.s00123456789abcde; temp1.s0 = line0.s8; sum += ( temp0 + temp1 ) * m_nFilter[2]; temp0.s0123456789abcdef = temp0.s123456789abcdeff; temp0.sf = line1.s2; temp1.s0123456789abcdef = temp1.s00123456789abcde; temp1.s0 = line0.s7; sum += ( temp0 + temp1 ) * m_nFilter[3]; temp0.s0123456789abcdef = temp0.s123456789abcdeff; temp0.sf = line1.s3; temp1.s0123456789abcdef = temp1.s00123456789abcde; temp1.s0 = line0.s6; sum += ( temp0 + temp1 ) * m_nFilter[4]; temp0.s0123456789abcdef = temp0.s123456789abcdeff; temp0.sf = line1.s4; sum += ( temp0 ) * m_nFilter[5]; line0 = line1; w16(j,y,sum ); j+=16; } } __kernel __attribute__((work_group_size_hint(64,1,1))) void ImageGaussianFilterVertical(__read_only image2d_t source, // Source image __write_only image2d_t dest, const int imgWidth , const int imgHeight) { const int x = get_global_id(0); if(x>=(imgWidth)) return; const float m_nFilter[11] = {1/256.0,4/256.0,8/256.0,16/256.0,32/256.0,134/256.0,32/256.0,16/256.0,8/256.0,4/256.0,1/256.0}; #define rv16(x,y) (float16)( r(x,y),r(x,y+1),r(x,y+2),r(x,y+3),r(x,y+4),r(x,y+5),r(x,y+6),r(x,y+7), r(x,y+8),r(x,y+9),r(x,y+10),r(x,y+11),r(x,y+12),r(x,y+13),r(x,y+14),r(x,y+15)) #define wv16(x,y,sum) write_imagef( dest, (int2) (x,y), sum.s0 );write_imagef( dest, (int2) (x,y+1), sum.s1 ); write_imagef( dest, (int2) (x,y+2), sum.s2 );write_imagef( dest, (int2) (x,y+3), sum.s3 ); write_imagef( dest, (int2) (x,y+4), sum.s4 );write_imagef( dest, (int2) (x,y+5), sum.s5 ); write_imagef( dest, (int2) (x,y+6), sum.s6 );write_imagef( dest, (int2) (x,y+7), sum.s7 ); write_imagef( dest, (int2) (x,y+8), sum.s8 );write_imagef( dest, (int2) (x,y+9), sum.s9 ); write_imagef( dest, (int2) (x,y+10), sum.sa );write_imagef( dest, (int2) (x,y+11), sum.sb ); write_imagef( dest, (int2) (x,y+12), sum.sc );write_imagef( dest, (int2) (x,y+13), sum.sd ); write_imagef( dest, (int2) (x,y+14), sum.se );write_imagef( dest, (int2) (x,y+15), sum.sf ); float16 line0 = rv16(x,-5); for(int j=0;j<imgHeight;){ float16 line1 = rv16(x,j-5+16); float16 temp0; float16 temp1; temp0 = line0; temp1.s0123 = line0.sabcd; temp1.s45 = line0.sef; temp1.s67 = line1.s01; temp1.s89abcdef = line1.s23456789; float16 sum = ( temp0 + temp1 ) * m_nFilter[0]; temp0.s0123456789abcdef = temp0.s123456789abcdeff; temp0.sf = line1.s0; temp1.s0123456789abcdef = temp1.s00123456789abcde; temp1.s0 = line0.s9; sum += ( temp0 + temp1 ) * m_nFilter[1]; temp0.s0123456789abcdef = temp0.s123456789abcdeff; temp0.sf = line1.s1; temp1.s0123456789abcdef = temp1.s00123456789abcde; temp1.s0 = line0.s8; sum += ( temp0 + temp1 ) * m_nFilter[2]; temp0.s0123456789abcdef = temp0.s123456789abcdeff; temp0.sf = line1.s2; temp1.s0123456789abcdef = temp1.s00123456789abcde; temp1.s0 = line0.s7; sum += ( temp0 + temp1 ) * m_nFilter[3]; temp0.s0123456789abcdef = temp0.s123456789abcdeff; temp0.sf = line1.s3; temp1.s0123456789abcdef = temp1.s00123456789abcde; temp1.s0 = line0.s6; sum += ( temp0 + temp1 ) * m_nFilter[4]; temp0.s0123456789abcdef = temp0.s123456789abcdeff; temp0.sf = line1.s4; sum += ( temp0 ) * m_nFilter[5]; line0 = line1; wv16(x,j,sum ); j+=16; } }