zoukankan      html  css  js  c++  java
  • 算法图解-狄克斯特拉算法

    本章内容:

    • 加权图-提高或者降低某些边的权重
    • 狄克斯特拉算法,能找出加权图中前往x的最短路径
    • 图中的环,它导致狄克斯特拉算不管用

    7.1狄克斯特拉算法

      4个步骤:

    1. 找出最便宜的节点,即最短时间内前往的节点
    2. 对于该节点的邻居,检查是否有前往他们的最短路径,如果有,就更新其开销
    3. 重复这个过程,知道对图中的每个节点都这样做了
    4. 计算最终路径

    7.3负边权

      狄克斯特拉算法不支持包含负边权的图,因为,狄克斯特拉算法这样假设:对于处理过的海报节点,没有前往该节点的更短的路径。包含负边权的图,可使用贝尔曼-福德算法(bellman-Ford algorithm)。

    7.4实现

     1 # the graph
     2 graph = {}
     3 graph["start"] = {}
     4 graph["start"]["a"] = 6
     5 graph["start"]["b"] = 2
     6 
     7 graph["a"] = {}
     8 graph["a"]["fin"] = 1
     9 
    10 graph["b"] = {}
    11 graph["b"]["a"] = 3
    12 graph["b"]["fin"] = 5
    13 
    14 graph["fin"] = {}
    15 
    16 # the costs table
    17 infinity = float("inf")
    18 costs = {}
    19 costs["a"] = 6
    20 costs["b"] = 2
    21 costs["fin"] = infinity
    22 
    23 # the parents table
    24 parents = {}
    25 parents["a"] = "start"
    26 parents["b"] = "start"
    27 parents["fin"] = None
    28 
    29 processed = []
    30 
    31 def find_lowest_cost_node(costs):
    32     lowest_cost = float("inf")
    33     lowest_cost_node = None
    34     # Go through each node.
    35     for node in costs:
    36         cost = costs[node]
    37         # If it's the lowest cost so far and hasn't been processed yet...
    38         if cost < lowest_cost and node not in processed:
    39             # ... set it as the new lowest-cost node.
    40             lowest_cost = cost
    41             lowest_cost_node = node
    42     return lowest_cost_node
    43 
    44 # Find the lowest-cost node that you haven't processed yet.
    45 node = find_lowest_cost_node(costs)
    46 # If you've processed all the nodes, this while loop is done.
    47 while node is not None:
    48     cost = costs[node]
    49     # Go through all the neighbors of this node.
    50     neighbors = graph[node]
    51     for n in neighbors.keys():
    52         new_cost = cost + neighbors[n]
    53         # If it's cheaper to get to this neighbor by going through this node...
    54         if costs[n] > new_cost:
    55             # ... update the cost for this node.
    56             costs[n] = new_cost
    57             # This node becomes the new parent for this neighbor.
    58             parents[n] = node
    59     # Mark the node as processed.
    60     processed.append(node)
    61     # Find the next node to process, and loop.
    62     node = find_lowest_cost_node(costs)
    63 
    64 print "Cost from the start to each node:"
    65 print costs
    dijkstras_algorithm.py

    字典graph描述了一个图,如下所示:

    costs描述了每个节点的开销;

    parents描述了一个父节点散列表。

    算法逻辑简述如下:

    • 查找开销最低的节点,获取该节点开销和邻居,即以此节点为起始点的权值和路径,这里是B节点。
    • 计算通过B节点到达其邻居的开销,并与从起点到达B邻居的开销对比。如图:到达A节点新开销较小,更新到达A节点的散列表开销值,并把A的父节点改为B;比较B节点到终点的路径2+5<无穷大,故将终点的路径由无穷大改为7,父节点改为B。
    • 将B节点标记为处理过。
    • 重复步骤1,查找出开销最低的节点即A;此时A的开销是5,终点的开销是7。
    • 重复步骤2,A只有一个邻居节点即终点,对比通过A到达终点的开销和已有的数据(7),更新到达终点的开销为6,并更新终点的父节点为A。
    • 所有的节点都查找过后,算法结束。通过父节点散列表可以得到最优路径;通过开销散列表可得到最少到达终点的开销。

    7.6小结

    • 广度优先搜索用于非加权图中从查找最短路径
    • 狄克斯特拉算法用于加权图中查找最短路径
    • 仅当权重为正时,狄克斯特拉算法才管用
    • 如果图中包含负权边,请使用贝尔曼-福德算法
  • 相关阅读:
    Uva 10494 If We Were a Child Again
    01 words & sentences BYOD
    Uva 465 Overflow
    354E
    MySQL/mariadb从删库到跑路——备份
    MySQL/mariadb知识点——日志记录(2)二进制日志
    MySQL/mariadb知识点——日志记录(1)
    MySQL/mariadb知识点——函数
    MySQL/mariadb知识点——数据库变量
    MySQL/mariadb知识点——事务Transactions
  • 原文地址:https://www.cnblogs.com/mofei004/p/8893414.html
Copyright © 2011-2022 走看看