zoukankan      html  css  js  c++  java
  • [P3931] Tree

    [P3931] Tree - 最大流

    Description

    割开一棵有根树,就是删除若干条边,使得任何任何叶子节点和根节点不连通。树的每一条边上具有割掉该边的代价。需要计算出割开这棵树的最小代价。

    Solution

    一个很经典的模型,树形 DP 维护即可,这里我们用最小割做,S 连根,叶子连 T,跑最大流就是答案

    #include <bits/stdc++.h>
    using namespace std;
    
    #define int long long
    
    #ifndef __FLOW_HPP__
    #define __FLOW_HPP__
    
    #include <bits/stdc++.h>
    using namespace std;
    #define int long long
    
    namespace flowsolution
    {
        const int N = 100005;
        const int M = 1000005;
        const int inf = 1e+12;
    
        struct MaxflowSolution
        {
            int *dis, ans, cnt = 1, s, t, *pre, *next, *head, *val;
    
            MaxflowSolution()
            {
                cnt = 1;
                dis = new int[N];
                pre = new int[M];
                next = new int[M];
                head = new int[N];
                val = new int[M];
                fill(dis, dis + N, 0);
                fill(pre, pre + M, 0);
                fill(next, next + M, 0);
                fill(head, head + N, 0);
                fill(val, val + M, 0);
            }
    
            ~MaxflowSolution()
            {
                delete[] dis;
                delete[] pre;
                delete[] next;
                delete[] head;
                delete[] val;
            }
    
            std::queue<int> q;
            void make(int x, int y, int z)
            {
                pre[++cnt] = y, next[cnt] = head[x], head[x] = cnt, val[cnt] = z;
                pre[++cnt] = x, next[cnt] = head[y], head[y] = cnt;
            }
    
            bool bfs()
            {
                fill(dis, dis + N, 0);
                q.push(s), dis[s] = 1;
                while (!q.empty())
                {
                    int x = q.front();
                    q.pop();
                    for (int i = head[x]; i; i = next[i])
                        if (!dis[pre[i]] && val[i])
                            dis[pre[i]] = dis[x] + 1, q.push(pre[i]);
                }
                return dis[t];
            }
    
            int dfs(int x, int flow)
            {
                if (x == t || !flow)
                    return flow;
                int f = flow;
                for (int i = head[x]; i; i = next[i])
                    if (val[i] && dis[pre[i]] > dis[x])
                    {
                        int y = dfs(pre[i], min(val[i], f));
                        f -= y, val[i] -= y, val[i ^ 1] += y;
                        if (!f)
                            return flow;
                    }
                if (f == flow)
                    dis[x] = -1;
                return flow - f;
            }
    
            int solve(int _s, int _t)
            {
                s = _s;
                t = _t;
                ans = 0;
                for (; bfs(); ans += dfs(s, inf))
                    ;
                return ans;
            }
        };
    
        struct CostflowSolution
        {
            struct Edge
            {
                int p = 0, c = 0, w = 0, next = -1;
            } * e;
            int s, t, tans, ans, cost, ind, *bus, qhead = 0, qtail = -1, *qu, *vis, *dist;
    
            CostflowSolution()
            {
                e = new Edge[M];
                qu = new int[M];
                bus = new int[N];
                vis = new int[N];
                dist = new int[N];
                fill(qu, qu + M, 0);
                fill(bus, bus + N, -1);
                fill(vis, vis + N, 0);
                fill(dist, dist + N, 0);
                ind = 0;
            }
    
            ~CostflowSolution()
            {
                delete[] e;
                delete[] qu;
                delete[] vis;
                delete[] dist;
            }
    
            void graph_link(int p, int q, int c, int w)
            {
                e[ind].p = q;
                e[ind].c = c;
                e[ind].w = w;
                e[ind].next = bus[p];
                bus[p] = ind;
                ++ind;
            }
    
            void make(int p, int q, int c, int w)
            {
                graph_link(p, q, c, w);
                graph_link(q, p, 0, -w);
            }
    
            int dinic_spfa()
            {
                qhead = 0;
                qtail = -1;
                fill(vis, vis + N, 0);
                fill(dist, dist + N, inf);
                vis[s] = 1;
                dist[s] = 0;
                qu[++qtail] = s;
                while (qtail >= qhead)
                {
                    int p = qu[qhead++];
                    vis[p] = 0;
                    for (int i = bus[p]; i != -1; i = e[i].next)
                        if (dist[e[i].p] > dist[p] + e[i].w && e[i].c > 0)
                        {
                            dist[e[i].p] = dist[p] + e[i].w;
                            if (vis[e[i].p] == 0)
                                vis[e[i].p] = 1, qu[++qtail] = e[i].p;
                        }
                }
                return dist[t] < inf;
            }
    
            int dinic_dfs(int p, int lim)
            {
                if (p == t)
                    return lim;
                vis[p] = 1;
                int ret = 0;
                for (int i = bus[p]; i != -1; i = e[i].next)
                {
                    int q = e[i].p;
                    if (e[i].c > 0 && dist[q] == dist[p] + e[i].w && vis[q] == 0)
                    {
                        int res = dinic_dfs(q, min(lim, e[i].c));
                        cost += res * e[i].w;
                        e[i].c -= res;
                        e[i ^ 1].c += res;
                        ret += res;
                        lim -= res;
                        if (lim == 0)
                            break;
                    }
                }
                return ret;
            }
    
            pair<int, int> solve(int _s, int _t)
            {
                s = _s;
                t = _t;
                ans = 0;
                cost = 0;
                while (dinic_spfa())
                {
                    fill(vis, vis + N, 0);
                    ans += dinic_dfs(s, inf);
                }
                return make_pair(ans, cost);
            }
        };
    } // namespace flowsolution
    
    #endif
    
    signed main()
    {
        ios::sync_with_stdio(false);
    
        int n, s, a, b, c;
        cin >> n >> s;
    
        flowsolution::MaxflowSolution flow;
    
        vector<vector<pair<int, int>>> g(n + 2);
    
        int t = n + 1;
    
        for (int i = 1; i < n; i++)
        {
            cin >> a >> b >> c;
            g[a].push_back({b, c});
            g[b].push_back({a, c});
        }
    
        function<void(int, int)> dfs = [&](int p, int from) -> void {
            int flag = 0;
            for (auto [q, w] : g[p])
                if (q != from)
                {
                    flag = 1;
                    flow.make(p, q, w);
                    dfs(q, p);
                }
            if (!flag)
                flow.make(p, t, 1e9);
        };
    
        dfs(s, 0);
    
        cout << flow.solve(s, t) << endl;
    }
    
  • 相关阅读:
    指针数组、数组指针以及二维数组
    jquery的基本动画方法
    jquery面试需要看的基本东西
    bootstrap
    node全栈工程师
    setTimeout 0秒
    随便写的
    Bootstrap2和3的区别
    记忆的代码
    offsetWidth与scrollLeft
  • 原文地址:https://www.cnblogs.com/mollnn/p/14350137.html
Copyright © 2011-2022 走看看