zoukankan      html  css  js  c++  java
  • Matlab AlexNet 识别花

    1. 首先,你要又并行计算的工具箱,在插件选项里面找到,安装即可


    2. 下载训练的数据集,采用matlab演示的材料即可

    https://matlabacademy-content.mathworks.com/3.3/R2017b/content/deeplearning_course_files.zip


    3. 运行训练脚本:

    The code below implements transfer learning for the flower species example in this chapter. It is available as the script trainflowers.mlx in the course example files. You can download the course example files from the help menu in the top-right corner. Note that this example can take some time to run if you run it on a computer that does not have a GPU.

    Get training images


    flower_ds = imageDatastore('Flowers','IncludeSubfolders',true,'LabelSource','foldernames');
    [trainImgs,testImgs] = splitEachLabel(flower_ds,0.6);
    numClasses = numel(categories(flower_ds.Labels));

     

    Create a network by modifying AlexNet


    net = alexnet;
    layers = net.Layers;
    layers(end-2) = fullyConnectedLayer(numClasses);
    layers(end) = classificationLayer;

     

    Set training algorithm options


    options = trainingOptions('sgdm','InitialLearnRate', 0.001);

     

    Perform training


    [flowernet,info] = trainNetwork(trainImgs, layers, options);

     

    Use trained network to classify test images


    testpreds = classify(flowernet,testImgs);


    4. 运行报错,GPU内存不够



    设置小一点:options = trainingOptions('sgdm','InitialLearnRate', 0.001,'MiniBatchSize', 64);


    options = 


      TrainingOptionsSGDM - 属性:


                         Momentum: 0.9000
                 InitialLearnRate: 1.0000e-03
        LearnRateScheduleSettings: [1×1 struct]
                 L2Regularization: 1.0000e-04
          GradientThresholdMethod: 'l2norm'
                GradientThreshold: Inf
                        MaxEpochs: 30
                    MiniBatchSize: 128
                          Verbose: 1
                 VerboseFrequency: 50
                   ValidationData: []
              ValidationFrequency: 50
               ValidationPatience: 5
                          Shuffle: 'once'
                   CheckpointPath: ''
             ExecutionEnvironment: 'auto'
                       WorkerLoad: []
                        OutputFcn: []
                            Plots: 'none'
                   SequenceLength: 'longest'

             SequencePaddingValue: 0


    5. 结果




  • 相关阅读:
    [考试反思]1108csp-s模拟测试105: 傀儡
    [考试反思]1107csp-s模拟测试104: 速度
    联赛前的咕咕咕(小计划)
    [考试反思]1106csp-s模拟测试103: 渺茫
    csp-s模拟测试101的T3代码+注释
    [考试反思]1105csp-s模拟测试102: 贪婪
    [考试反思]1105csp-s模拟测试101: 临别
    [考试反思]1104csp-s模拟测试100: 终结
    [考试反思]1103csp-s模拟测试99: 美梦
    [考试反思]1102csp-s模拟测试98:苟活
  • 原文地址:https://www.cnblogs.com/mrcharles/p/11879791.html
Copyright © 2011-2022 走看看