zoukankan      html  css  js  c++  java
  • Matlab AlexNet 识别花

    1. 首先,你要又并行计算的工具箱,在插件选项里面找到,安装即可


    2. 下载训练的数据集,采用matlab演示的材料即可

    https://matlabacademy-content.mathworks.com/3.3/R2017b/content/deeplearning_course_files.zip


    3. 运行训练脚本:

    The code below implements transfer learning for the flower species example in this chapter. It is available as the script trainflowers.mlx in the course example files. You can download the course example files from the help menu in the top-right corner. Note that this example can take some time to run if you run it on a computer that does not have a GPU.

    Get training images


    flower_ds = imageDatastore('Flowers','IncludeSubfolders',true,'LabelSource','foldernames');
    [trainImgs,testImgs] = splitEachLabel(flower_ds,0.6);
    numClasses = numel(categories(flower_ds.Labels));

     

    Create a network by modifying AlexNet


    net = alexnet;
    layers = net.Layers;
    layers(end-2) = fullyConnectedLayer(numClasses);
    layers(end) = classificationLayer;

     

    Set training algorithm options


    options = trainingOptions('sgdm','InitialLearnRate', 0.001);

     

    Perform training


    [flowernet,info] = trainNetwork(trainImgs, layers, options);

     

    Use trained network to classify test images


    testpreds = classify(flowernet,testImgs);


    4. 运行报错,GPU内存不够



    设置小一点:options = trainingOptions('sgdm','InitialLearnRate', 0.001,'MiniBatchSize', 64);


    options = 


      TrainingOptionsSGDM - 属性:


                         Momentum: 0.9000
                 InitialLearnRate: 1.0000e-03
        LearnRateScheduleSettings: [1×1 struct]
                 L2Regularization: 1.0000e-04
          GradientThresholdMethod: 'l2norm'
                GradientThreshold: Inf
                        MaxEpochs: 30
                    MiniBatchSize: 128
                          Verbose: 1
                 VerboseFrequency: 50
                   ValidationData: []
              ValidationFrequency: 50
               ValidationPatience: 5
                          Shuffle: 'once'
                   CheckpointPath: ''
             ExecutionEnvironment: 'auto'
                       WorkerLoad: []
                        OutputFcn: []
                            Plots: 'none'
                   SequenceLength: 'longest'

             SequencePaddingValue: 0


    5. 结果




  • 相关阅读:
    ONNX 开始
    Linux 性能相关工具
    Prometheus + Grafana 快速上手
    RTSP 流相关工具介绍
    TensorFlow Serving
    TensorFlow 的 JupyterLab 环境
    【排序算法动画解】排序介绍及冒泡排序
    上课老师提问我什么是二叉查找树,我把这些动图拿了出来,动图图解及代码实现。
    如何找东西?查找算法之顺序查找和二分查找详解
    【数据结构和算法:简单方法】谈一谈优先队列的实现
  • 原文地址:https://www.cnblogs.com/mrcharles/p/11879791.html
Copyright © 2011-2022 走看看