如何合理地估算线程池大小?
这个问题虽然看起来很小,却并不那么容易回答。大家如果有更好的方法欢迎赐教,先来一个天真的估算方法:假设要求一个系统的TPS(Transaction Per Second或者Task Per Second)至少为20,然后假设每个Transaction由一个线程完成,继续假设平均每个线程处理一个Transaction的时间为4s。那么问题转化为:如何设计线程池大小,使得可以在1s内处理完20个Transaction?
计算过程很简单,每个线程的处理能力为0.25TPS,那么要达到20TPS,显然需要20/0.25=80个线程。
很显然这个估算方法很天真,因为它没有考虑到CPU数目。一般服务器的CPU核数为16或者32,如果有80个线程,那么肯定会带来太多不必要的线程上下文切换开销。
再来第二种简单的但不知是否可行的方法(N为CPU总核数):
- 如果是CPU密集型应用,则线程池大小设置为N+1
- 如果是IO密集型应用,则线程池大小设置为2N+1
如果一台服务器上只部署这一个应用并且只有这一个线程池,那么这种估算或许合理,具体还需自行测试验证。
接下来在这个文档:服务器性能IO优化 中发现一个估算公式:
最佳线程数目 = ((线程等待时间+线程CPU时间)/线程CPU时间 )* CPU数目
比如平均每个线程CPU运行时间为0.5s,而线程等待时间(非CPU运行时间,比如IO)为1.5s,CPU核心数为8,那么根据上面这个公式估算得到:((0.5+1.5)/0.5)*8=32。这个公式进一步转化为:
最佳线程数目 = (线程等待时间与线程CPU时间之比 + 1)* CPU数目
可以得出一个结论:线程等待时间所占比例越高,需要越多线程。线程CPU时间所占比例越高,需要越少线程。
上一种估算方法也和这个结论相合。
一个系统最快的部分是CPU,所以决定一个系统吞吐量上限的是CPU。增强CPU处理能力,可以提高系统吞吐量上限。但根据短板效应,真实的系统吞吐量并不能单纯根据CPU来计算。那要提高系统吞吐量,就需要从“系统短板”(比如网络延迟、IO)着手:
- 尽量提高短板操作的并行化比率,比如多线程下载技术
- 增强短板能力,比如用NIO替代IO
第一条可以联系到Amdahl定律,这条定律定义了串行系统并行化后的加速比计算公式:
加速比=优化前系统耗时 / 优化后系统耗时
加速比越大,表明系统并行化的优化效果越好。Addahl定律还给出了系统并行度、CPU数目和加速比的关系,加速比为Speedup,系统串行化比率(指串行执行代码所占比率)为F,CPU数目为N:
Speedup <= 1 / (F + (1-F)/N)
当N足够大时,串行化比率F越小,加速比Speedup越大。
写到这里,我突然冒出一个问题。
是否使用线程池就一定比使用单线程高效呢?
答案是否定的,比如Redis就是单线程的,但它却非常高效,基本操作都能达到十万量级/s。从线程这个角度来看,部分原因在于:
- 多线程带来线程上下文切换开销,单线程就没有这种开销
- 锁
当然“Redis很快”更本质的原因在于:Redis基本都是内存操作,这种情况下单线程可以很高效地利用CPU。而多线程适用场景一般是:存在相当比例的IO和网络操作。
所以即使有上面的简单估算方法,也许看似合理,但实际上也未必合理,都需要结合系统真实情况(比如是IO密集型或者是CPU密集型或者是纯内存操作)和硬件环境(CPU、内存、硬盘读写速度、网络状况等)来不断尝试达到一个符合实际的合理估算值。
最后来一个“Dark Magic”估算方法(因为我暂时还没有搞懂它的原理),使用下面的类:
1 package threadpool; 2 3 import java.math.BigDecimal; 4 import java.math.RoundingMode; 5 import java.util.Timer; 6 import java.util.TimerTask; 7 import java.util.concurrent.BlockingQueue; 8 9 /** 10 * A class that calculates the optimal thread pool boundaries. It takes the 11 * desired target utilization and the desired work queue memory consumption as 12 * input and retuns thread count and work queue capacity. 13 * 14 * @author Niklas Schlimm 15 */ 16 public abstract class PoolSizeCalculator { 17 18 /** 19 * The sample queue size to calculate the size of a single {@link Runnable} 20 * element. 21 */ 22 private final int SAMPLE_QUEUE_SIZE = 1000; 23 24 /** 25 * Accuracy of test run. It must finish within 20ms of the testTime 26 * otherwise we retry the test. This could be configurable. 27 */ 28 private final int EPSYLON = 20; 29 30 /** 31 * Control variable for the CPU time investigation. 32 */ 33 private volatile boolean expired; 34 35 /** 36 * Time (millis) of the test run in the CPU time calculation. 37 */ 38 private final long testtime = 3000; 39 40 /** 41 * Calculates the boundaries of a thread pool for a given {@link Runnable}. 42 * 43 * @param targetUtilization the desired utilization of the CPUs (0 <= targetUtilization <= * 1) * @param targetQueueSizeBytes * the desired maximum work queue size of the thread pool (bytes) 44 */ 45 protected void calculateBoundaries(BigDecimal targetUtilization, BigDecimal targetQueueSizeBytes) { 46 calculateOptimalCapacity(targetQueueSizeBytes); 47 Runnable task = creatTask(); 48 start(task); 49 start(task); // warm up phase 50 long cputime = getCurrentThreadCPUTime(); 51 start(task); // test intervall 52 cputime = getCurrentThreadCPUTime() - cputime; 53 long waittime = (testtime * 1000000) - cputime; 54 calculateOptimalThreadCount(cputime, waittime, targetUtilization); 55 } 56 57 private void calculateOptimalCapacity(BigDecimal targetQueueSizeBytes) { 58 long mem = calculateMemoryUsage(); 59 BigDecimal queueCapacity = targetQueueSizeBytes.divide(new BigDecimal(mem), 60 RoundingMode.HALF_UP); 61 System.out.println("Target queue memory usage (bytes): " 62 + targetQueueSizeBytes); 63 System.out.println("createTask() produced " + creatTask().getClass().getName() + " which took " + mem + " bytes in a queue"); 64 System.out.println("Formula: " + targetQueueSizeBytes + " / " + mem); 65 System.out.println("* Recommended queue capacity (bytes): " + queueCapacity); 66 } 67 68 /** 69 * Brian Goetz' optimal thread count formula, see 'Java Concurrency in 70 * * Practice' (chapter 8.2) * 71 * * @param cpu 72 * * cpu time consumed by considered task 73 * * @param wait 74 * * wait time of considered task 75 * * @param targetUtilization 76 * * target utilization of the system 77 */ 78 private void calculateOptimalThreadCount(long cpu, long wait, 79 BigDecimal targetUtilization) { 80 BigDecimal waitTime = new BigDecimal(wait); 81 BigDecimal computeTime = new BigDecimal(cpu); 82 BigDecimal numberOfCPU = new BigDecimal(Runtime.getRuntime() 83 .availableProcessors()); 84 BigDecimal optimalthreadcount = numberOfCPU.multiply(targetUtilization) 85 .multiply(new BigDecimal(1).add(waitTime.divide(computeTime, 86 RoundingMode.HALF_UP))); 87 System.out.println("Number of CPU: " + numberOfCPU); 88 System.out.println("Target utilization: " + targetUtilization); 89 System.out.println("Elapsed time (nanos): " + (testtime * 1000000)); 90 System.out.println("Compute time (nanos): " + cpu); 91 System.out.println("Wait time (nanos): " + wait); 92 System.out.println("Formula: " + numberOfCPU + " * " 93 + targetUtilization + " * (1 + " + waitTime + " / " 94 + computeTime + ")"); 95 System.out.println("* Optimal thread count: " + optimalthreadcount); 96 } 97 98 /** 99 * * Runs the {@link Runnable} over a period defined in {@link #testtime}. 100 * * Based on Heinz Kabbutz' ideas 101 * * (http://www.javaspecialists.eu/archive/Issue124.html). 102 * * 103 * * @param task 104 * * the runnable under investigation 105 */ 106 public void start(Runnable task) { 107 long start = 0; 108 int runs = 0; 109 do { 110 if (++runs > 5) { 111 throw new IllegalStateException("Test not accurate"); 112 } 113 expired = false; 114 start = System.currentTimeMillis(); 115 Timer timer = new Timer(); 116 timer.schedule(new TimerTask() { 117 public void run() { 118 expired = true; 119 } 120 }, testtime); 121 while (!expired) { 122 task.run(); 123 } 124 start = System.currentTimeMillis() - start; 125 timer.cancel(); 126 } while (Math.abs(start - testtime) > EPSYLON); 127 collectGarbage(3); 128 } 129 130 private void collectGarbage(int times) { 131 for (int i = 0; i < times; i++) { 132 System.gc(); 133 try { 134 Thread.sleep(10); 135 } catch (InterruptedException e) { 136 Thread.currentThread().interrupt(); 137 break; 138 } 139 } 140 } 141 142 /** 143 * Calculates the memory usage of a single element in a work queue. Based on 144 * Heinz Kabbutz' ideas 145 * (http://www.javaspecialists.eu/archive/Issue029.html). 146 * 147 * @return memory usage of a single {@link Runnable} element in the thread 148 * pools work queue 149 */ 150 public long calculateMemoryUsage() { 151 BlockingQueue queue = createWorkQueue(); 152 for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) { 153 queue.add(creatTask()); 154 } 155 156 long mem0 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory(); 157 long mem1 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory(); 158 159 queue = null; 160 161 collectGarbage(15); 162 163 mem0 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory(); 164 queue = createWorkQueue(); 165 166 for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) { 167 queue.add(creatTask()); 168 } 169 170 collectGarbage(15); 171 172 mem1 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory(); 173 174 return (mem1 - mem0) / SAMPLE_QUEUE_SIZE; 175 } 176 177 /** 178 * Create your runnable task here. 179 * 180 * @return an instance of your runnable task under investigation 181 */ 182 protected abstract Runnable creatTask(); 183 184 /** 185 * Return an instance of the queue used in the thread pool. 186 * 187 * @return queue instance 188 */ 189 protected abstract BlockingQueue createWorkQueue(); 190 191 /** 192 * Calculate current cpu time. Various frameworks may be used here, 193 * depending on the operating system in use. (e.g. 194 * http://www.hyperic.com/products/sigar). The more accurate the CPU time 195 * measurement, the more accurate the results for thread count boundaries. 196 * 197 * @return current cpu time of current thread 198 */ 199 protected abstract long getCurrentThreadCPUTime(); 200 201 }
然后自己继承这个抽象类并实现它的三个抽象方法,比如下面是我写的一个示例(任务是请求网络数据),其中我指定期望CPU利用率为1.0(即100%),任务队列总大小不超过100,000字节:
1 package threadpool; 2 3 import java.io.BufferedReader; 4 import java.io.IOException; 5 import java.io.InputStreamReader; 6 import java.lang.management.ManagementFactory; 7 import java.math.BigDecimal; 8 import java.net.HttpURLConnection; 9 import java.net.URL; 10 import java.util.concurrent.BlockingQueue; 11 import java.util.concurrent.LinkedBlockingQueue; 12 13 public class SimplePoolSizeCaculatorImpl extends PoolSizeCalculator { 14 15 @Override 16 protected Runnable creatTask() { 17 return new AsyncIOTask(); 18 } 19 20 @Override 21 protected BlockingQueue createWorkQueue() { 22 return new LinkedBlockingQueue(1000); 23 } 24 25 @Override 26 protected long getCurrentThreadCPUTime() { 27 return ManagementFactory.getThreadMXBean().getCurrentThreadCpuTime(); 28 } 29 30 public static void main(String[] args) { 31 PoolSizeCalculator poolSizeCalculator = new SimplePoolSizeCaculatorImpl(); 32 poolSizeCalculator.calculateBoundaries(new BigDecimal(1.0), new BigDecimal(100000)); 33 } 34 35 } 36 37 /** 38 * 自定义的异步IO任务 39 * @author Will 40 * 41 */ 42 class AsyncIOTask implements Runnable { 43 44 public void run() { 45 HttpURLConnection connection = null; 46 BufferedReader reader = null; 47 try { 48 String getURL = "http://baidu.com"; 49 URL getUrl = new URL(getURL); 50 51 connection = (HttpURLConnection) getUrl.openConnection(); 52 connection.connect(); 53 reader = new BufferedReader(new InputStreamReader( 54 connection.getInputStream())); 55 56 String line; 57 while ((line = reader.readLine()) != null) { 58 // empty loop 59 } 60 } 61 62 catch (IOException e) { 63 64 } finally { 65 if(reader != null) { 66 try { 67 reader.close(); 68 } 69 catch(Exception e) { 70 71 } 72 } 73 connection.disconnect(); 74 } 75 76 } 77 78 }
得到如下输出:
Target queue memory usage (bytes): 100000 createTask() produced threadpool.AsyncIOTask which took 40 bytes in a queue Formula: 100000 / 40 * Recommended queue capacity (bytes): 2500 Number of CPU: 8 Target utilization: 1 Elapsed time (nanos): 3000000000 Compute time (nanos): 280801800 Wait time (nanos): 2719198200 Formula: 8 * 1 * (1 + 2719198200 / 280801800) * Optimal thread count: 88
推荐的任务队列大小为2500,线程数为88。依次为依据,我们就可以构造这样一个线程池:
ThreadPoolExecutor pool = new ThreadPoolExecutor(88, 88, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>(2500));
可以将这个文件打包成可执行的jar文件,这样就可以拷贝到测试/正式环境上执行。
1 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 2 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> 3 <modelVersion>4.0.0</modelVersion> 4 5 <groupId>threadpool</groupId> 6 <artifactId>dark-magic</artifactId> 7 <version>1.0-SNAPSHOT</version> 8 <packaging>jar</packaging> 9 10 <name>dark_magic</name> 11 <url>http://maven.apache.org</url> 12 13 <properties> 14 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> 15 </properties> 16 17 <dependencies> 18 19 </dependencies> 20 21 <build> 22 <finalName>dark-magic</finalName> 23 24 <plugins> 25 <plugin> 26 <artifactId>maven-assembly-plugin</artifactId> 27 <configuration> 28 <appendAssemblyId>false</appendAssemblyId> 29 <descriptorRefs> 30 <descriptorRef>jar-with-dependencies</descriptorRef> 31 </descriptorRefs> 32 <archive> 33 <manifest> 34 <!-- 此处指定main方法入口的class --> 35 <mainClass>threadpool.SimplePoolSizeCaculatorImpl</mainClass> 36 </manifest> 37 </archive> 38 </configuration> 39 <executions> 40 <execution> 41 <id>make-assembly</id> 42 <phase>package</phase> 43 <goals> 44 <goal>assembly</goal> 45 </goals> 46 </execution> 47 </executions> 48 </plugin> 49 </plugins> 50 </build> 51 </project>
转载:
http://ifeve.com/how-to-calculate-threadpool-size/
http://www.importnew.com/17384.html
https://www.cnblogs.com/cherish010/p/8334952.html