zoukankan      html  css  js  c++  java
  • [HEOI2016/TJOI2016]求和

    嘟嘟嘟


    好多人(神仙)都说这是NTT例题,然后我就做了……
    做这题,需要一下前置技能:
    1.第二类斯特林数
    2.NTT
    3.没有公式恐惧症


    额……不会斯特林数的话(就像我),知道通项公式也行。
    这个博客挺好:第二类斯特林数总结
    然后就是一顿暴推了。


    首先如果直接往原式里带通项公式的话好像搞不出来,这时候需要用点技巧,换一下枚举顺序:

    [f(n) = sum _ {j = 0} ^ {n} 2 ^ j * (j!) sum _ {i = 0} ^ {n} S(i, j) ]

    讲道理(i)应该从(j)枚举到(n),但因为(S(i, j) = 0(i < j)),所以就改成了从(0)枚举。
    然后代入第二类斯特林数通项公式(S(n, m) = frac{1}{m!} sum _ {k = 0} ^ {m} (-1) ^ k C(m, k) (m - k) ^ n)

    [egin{align*} f(n) &= sum_{j = 0} ^ {n} 2 ^ j * (j!) sum_{i = 0} ^ {n} sum_{k = 0} ^ {j} (-1) ^ k C(j, k) * (j - k) ^ i \ &= sum_{j = 0} ^ {n} 2 ^ j * (j!) sum_{k = 0} ^ {j} (-1) ^ k C(j, k) * sum_{i = 0} ^ {n} (j - k) ^ i \ &= sum_{j = 0} ^ {n} 2 ^ j * (j!) sum_{k = 0} ^ {j} frac{(-1) ^ k}{k!} * frac{sum_{i = 0} ^ {n} (j - k) ^ n}{(j - k)!} end{align*}]

    发现(sum _ {i = 0} ^ {n} (j - k) ^ n)是一个等比数列,(O(1))可解。
    然后令(A(t) = frac{(-1) ^ t}{t!})(B(t) = frac{sum _ {i = 0} ^ {n} t ^ n}{t!})。这俩都可以(O(n))预处理出来。
    于是上式变成了

    [f(n) = sum _ {j = 0} ^ {n} 2 ^ j * (j!) sum _ {k = 0} ^ {j} A(k) * B(j - k) ]

    后面的(sum)是一个卷积的形式,NTT就行,于是这题就完事了。


    (反正自己没推出来)

    #include<cstdio>
    #include<iostream>
    #include<cmath>
    #include<algorithm>
    #include<cstring>
    #include<cstdlib>
    #include<cctype>
    #include<vector>
    #include<stack>
    #include<queue>
    using namespace std;
    #define enter puts("") 
    #define space putchar(' ')
    #define Mem(a, x) memset(a, x, sizeof(a))
    #define In inline
    typedef long long ll;
    typedef double db;
    const int INF = 0x3f3f3f3f;
    const db eps = 1e-8;
    const ll mod = 998244353;
    const ll G = 3;
    const int maxn = 1e5 + 5;
    const int maxl = 4e6 + 5;
    inline ll read()
    {
      ll ans = 0;
      char ch = getchar(), last = ' ';
      while(!isdigit(ch)) last = ch, ch = getchar();
      while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
      if(last == '-') ans = -ans;
      return ans;
    }
    inline void write(ll x)
    {
      if(x < 0) x = -x, putchar('-');
      if(x >= 10) write(x / 10);
      putchar(x % 10 + '0');
    }
    
    int n, rev[maxl];
    ll fac[maxn], inv_f[maxn], inv[maxn];
    ll A[maxl], B[maxl];
    
    In ll quickpow(ll a, ll b)
    {
      ll ret = 1;
      for(; b; b >>= 1, a = a * a % mod)
        if(b & 1) ret = ret * a % mod;
      return ret;
    }
    
    In void init()
    {
      fac[0] = fac[1] = 1;
      for(int i = 2; i <= n; ++i) fac[i] = fac[i - 1] * i % mod;
      inv_f[n] = quickpow(fac[n], mod - 2);
      for(int i = n - 1; i >= 0; --i) inv_f[i] = inv_f[i + 1] * (i + 1) % mod;
      inv[0] = inv[1] = 1;
      for(int i = 2; i <= n; ++i) inv[i] = inv[mod % i] * (mod - mod / i) % mod;
      for(int i = 0, flg = 1; i <= n; ++i, flg *= (-1)) A[i] = (inv_f[i] * flg + mod) % mod;
      B[0] = 1; B[1] = n + 1;
      for(int i = 2; i <= n; ++i) B[i] = (quickpow(i, n + 1) - 1 + mod) % mod * inv[i - 1] % mod * inv_f[i] % mod;
    }
    
    In void ntt(ll* a, int len, bool flg)
    {
      for(int i = 0; i < len; ++i) if(i < rev[i]) swap(a[i], a[rev[i]]);
      for(int i = 1; i < len; i <<= 1)
        {
          ll ng = quickpow(G, (mod - 1) / (i << 1));
          for(int j = 0; j < len; j += (i << 1))
    	{
    	  ll g = 1;
    	  for(int k = 0; k < i; ++k, g = g * ng % mod)
    	    {
    	      ll tp1 = a[k + j], tp2 = a[k + j + i] * g % mod;
    	      a[k + j] = (tp1 + tp2) % mod, a[k + j + i] = (tp1 - tp2 + mod) % mod;
    	    }
    	}
        }
      if(flg) return;
      ll inv = quickpow(len, mod - 2); reverse(a + 1, a + len);
      for(int i = 0; i < len; ++i) a[i] = a[i] * inv % mod;
    }
    
    int main()
    {
      n = read();
      init();
      int len = 1, lim = 0;
      while(len <= n + n) len <<= 1, ++lim;
      for(int i = 0; i < len; ++i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (lim - 1));
      ntt(A, len, 1); ntt(B, len, 1);
      for(int i = 0; i < len; ++i) A[i] = A[i] * B[i] % mod;
      ntt(A, len, 0);
      ll ans = 0, tp = 1;
      for(int i = 0; i <= n; ++i, tp = (tp + tp) % mod) ans = (ans + fac[i] * tp % mod * A[i] % mod) % mod;
      write(ans), enter;
      return 0;
    }
    
  • 相关阅读:
    一种可以实时检测IP地址合法性的EditText输入框
    LVDS 屏幕 M215HGE-L21 在 rk3288 上的适配过程
    轻读一下 Android 应用开发中的 assets 目录
    XML与其在Android下的解析
    Linux Shell脚本实现根据进程名杀死进程
    RSA host key has changed 错误
    Linux下安装jdk8步骤详述
    Windows/Linux javac/java编译运行引入所需的jar包
    No cached version of ..... available for offline mode.
    Java学习之InputStream中read()与read(byte[] b)
  • 原文地址:https://www.cnblogs.com/mrclr/p/10383417.html
Copyright © 2011-2022 走看看