zoukankan      html  css  js  c++  java
  • Dual Path Networks

    《Dual Path Networks》

    一篇讲如何设计网络结构的文章,大体上整合了ResNet和 DenseNet的优点: 
    - ResNet: 侧重于特征的再利用(因为整合特征采用的是加和操作) 
    - DenseNet: 侧重于新特征的发掘(因为整合特征采用的是拼接操作)

    DPN是一种结合了ResNet和DenseNet优势的新型卷积网络结构。深度残差网络通过残差旁支通路再利用特征,但残差通道不善于探索新特征。密集连接网络通过密集连接通路探索新特征,但有高冗余度

    论文从数学表达上对ResNet、DenseNet和HORNN的关系进行了表示,经证明,当连接在层中共享时残差网可看作密集连接网络,当权重在各步中共享时密集连接网络是高阶RNN。

    在ImagNet-1k数据集上,浅DPN超过了最好的ResNeXt-101(64×4d),具有26%更小的模型尺寸,25%的计算成本和8%的更低的内存消耗

    Github项目主页: https://github.com/cypw/DPNs

    1. ResNet, DenseNet and Higher Order RNN

    本文试图为ResNet 和 DenseNet找到一个形式统一的数学表达。

    如式(1),ht 表示 t 时刻的隐层状态;索引 k 表示当前时刻; xt 表示 t 时刻的输入; fkt() 表示特征提取; gk 表示对提取特征做输出前的变换。

    当假设 t,k,fkt()=ft()时, 我们可以对上式做进一步的形式上的变换:用 rk 表示中间结果,并令 r0=0

    其中, ϕk()=fk(gk()

    (1)Higher Order RNN

    对于HORNN,所有时刻的权重都是共享的,即 ϕk()保持不变,于是有:

    t,k,fkkt()=ft()

    k,gk()=g()

    (2)ResNet

    对于ResNet,显然 ϕk()在每一时刻都是变化的,且 xk=0, k>1,于是总结有:

    t,k,fkkt()=ft() 但 gk不共享。

    (3)DenseNet

    对于DenseNet, 每一时刻(即每一个mini-block)都有其独有的参数,即不要求任意时刻fkt()保持不变。 于是,我们可以认为ResNet是DenseNet的特殊情形。

    结合上面的分析,下图中的(a)和(b)说明了ResNet与RNN的关系;下图中的(a)和(c)说明了ResNet与DenseNet的关系。

    2. Dual Path Networks

    通过上面的分析,我们可以认识到 :

    • ResNet: 侧重于特征的再利用,但不善于发掘新的特征;
    • DenseNet: 侧重于新特征的发掘,但又会产生很多冗余;

    为了综合二者的优点,作者设计了DPN网络,其数学形式如下:

    显然,式(5)表示DenseNet的形式,侧重于发掘新特征;式(5)表示ResNet的形式,侧重于特征的再利用;式(6)表示二者结合。

    下图给出DPN的设计结构:

    这里写图片描述

    如上图所示,图(a)是残差网络示意图;图(b)是 DenseNet的示意图,其中加下划线的1x1卷积是临时增加的,只为了和(a)在形式上对齐; 图(c)表示当将所有第一个1x1卷积共享后,DenseNet可以退化为残差形式; 图(d)为DPN; 图(e)为DPN的实现形式,其中  表示拆分;

    由于DenseNet的Concat操作会加宽feature map,为了减慢增宽速度同时减轻GPU的使用,因此如上图(e)所示:网络结构以ResNet的加和为主体,以DenseNet的拼接为辅助。 同时,为了进一步提高网络表达能力,每个Block的第2个卷积层,采用了group操作。

    具体的网络结构如下表所示:(注意下参数量param以及计算量FLOPS的对比:)

    这里写图片描述

  • 相关阅读:
    《图解CSS3》笔记5 媒体与Responsive设计
    理论篇 前端MVC、MVP、MVVM思考1
    AngularJS篇 $resource使用笔记
    《图解CSS3》笔记4 animation动画
    Prim
    邻接矩阵与邻接表
    差分约束
    SPFA
    floyd
    Kosaraju
  • 原文地址:https://www.cnblogs.com/mrxsc/p/7693316.html
Copyright © 2011-2022 走看看