zoukankan      html  css  js  c++  java
  • AVL树的实现——c++

    一、概念

    AVL树是根据它的发明者G.M. Adelson-Velsky和E.M. Landis命名的。
    它是最先发明的自平衡二叉查找树,也被称为高度平衡树。相比于"二叉查找树",它的特点是:AVL树中任何节点的两个子树的高度最大差别为1。

    AVL树的查找、插入和删除在平均和最坏情况下都是O(logn)。
    如果在AVL树中插入或删除节点后,使得高度之差大于1。此时,AVL树的平衡状态就被破坏,它就不再是一棵二叉树;为了让它重新维持在一个平衡状态,就需要对其进行旋转处理。学AVL树,重点的地方也就是它的旋转算法

    二、AVL树的实现

    1. 节点

    1.1 AVL树节点

    template <class T>
    class AVLTreeNode{
        public:
            T key;                // 关键字(键值)
            int height;         // 高度
            AVLTreeNode *left;    // 左孩子
            AVLTreeNode *right;    // 右孩子
    
            AVLTreeNode(T value, AVLTreeNode *l, AVLTreeNode *r):
                key(value), height(0),left(l),right(r) {}
    };

    AVLTreeNode是AVL树的节点类,它包括的几个组成对象:
    (01) key -- 是关键字,是用来对AVL树的节点进行排序的。
    (02) left -- 是左孩子。
    (03) right -- 是右孩子。
    (04) height -- 是高度。

    1.2 AVL树

    template <class T>
    class AVLTree {
        private:
            AVLTreeNode<T> *mRoot;    // 根结点
    
        public:
            AVLTree();
            ~AVLTree();
    
            // 获取树的高度
            int height();
            // 获取树的高度
            int max(int a, int b);
    
            // 前序遍历"AVL树"
            void preOrder();
            // 中序遍历"AVL树"
            void inOrder();
            // 后序遍历"AVL树"
            void postOrder();
    
            // (递归实现)查找"AVL树"中键值为key的节点
            AVLTreeNode<T>* search(T key);
            // (非递归实现)查找"AVL树"中键值为key的节点
            AVLTreeNode<T>* iterativeSearch(T key);
    
            // 查找最小结点:返回最小结点的键值。
            T minimum();
            // 查找最大结点:返回最大结点的键值。
            T maximum();
    
            // 将结点(key为节点键值)插入到AVL树中
            void insert(T key);
    
            // 删除结点(key为节点键值)
            void remove(T key);
    
            // 销毁AVL树
            void destroy();
    
            // 打印AVL树
            void print();
        private:
            // 获取树的高度
            int height(AVLTreeNode<T>* tree) ;
    
            // 前序遍历"AVL树"
            void preOrder(AVLTreeNode<T>* tree) const;
            // 中序遍历"AVL树"
            void inOrder(AVLTreeNode<T>* tree) const;
            // 后序遍历"AVL树"
            void postOrder(AVLTreeNode<T>* tree) const;
    
            // (递归实现)查找"AVL树x"中键值为key的节点
            AVLTreeNode<T>* search(AVLTreeNode<T>* x, T key) const;
            // (非递归实现)查找"AVL树x"中键值为key的节点
            AVLTreeNode<T>* iterativeSearch(AVLTreeNode<T>* x, T key) const;
    
            // 查找最小结点:返回tree为根结点的AVL树的最小结点。
            AVLTreeNode<T>* minimum(AVLTreeNode<T>* tree);
            // 查找最大结点:返回tree为根结点的AVL树的最大结点。
            AVLTreeNode<T>* maximum(AVLTreeNode<T>* tree);
    
            // LL:左左对应的情况(左单旋转)。
            AVLTreeNode<T>* leftLeftRotation(AVLTreeNode<T>* k2);
    
            // RR:右右对应的情况(右单旋转)。
            AVLTreeNode<T>* rightRightRotation(AVLTreeNode<T>* k1);
    
            // LR:左右对应的情况(左双旋转)。
            AVLTreeNode<T>* leftRightRotation(AVLTreeNode<T>* k3);
    
            // RL:右左对应的情况(右双旋转)。
            AVLTreeNode<T>* rightLeftRotation(AVLTreeNode<T>* k1);
    
            // 将结点(z)插入到AVL树(tree)中
            AVLTreeNode<T>* insert(AVLTreeNode<T>* &tree, T key);
    
            // 删除AVL树(tree)中的结点(z),并返回被删除的结点
            AVLTreeNode<T>* remove(AVLTreeNode<T>* &tree, AVLTreeNode<T>* z);
    
            // 销毁AVL树
            void destroy(AVLTreeNode<T>* &tree);
    
            // 打印AVL树
            void print(AVLTreeNode<T>* tree, T key, int direction);
    };

    AVLTree是AVL树对应的类。它包含AVL树的根节点mRoot和AVL树的基本操作接口。需要说明的是:AVLTree中重载了许多函数。重载的目的是区分内部接口和外部接口,例如insert()函数而言,insert(tree, key)是内部接口,而insert(key)是外部。

    1.3 树的高度

    /*
     * 获取树的高度
     */
    template <class T>
    int AVLTree<T>::height(AVLTreeNode<T>* tree) 
    {
        if (tree != NULL)
            return tree->height;
    
        return 0;
    }
    
    template <class T>
    int AVLTree<T>::height() 
    {
        return height(mRoot);
    }

    1.4 比较大小

    /*
     * 比较两个值的大小
     */
    template <class T>
    int AVLTree<T>::max(int a, int b) 
    {
        return a>b ? a : b;
    }

    2. 旋转

    如果在AVL树中进行插入或删除节点后,可能导致AVL树失去平衡。这种失去平衡的可以概括为4种姿态:LL(左左),LR(左右),RR(右右)和RL(右左)。下面给出它们的示意图:

    上图中的4棵树都是"失去平衡的AVL树",从左往右的情况依次是:LL、LR、RL、RR。除了上面的情况之外,还有其它的失去平衡的AVL树,如下图:

    上面的两张图都是为了便于理解,而列举的关于"失去平衡的AVL树"的例子。总的来说,AVL树失去平衡时的情况一定是LL、LR、RL、RR这4种之一,它们都由各自的定义:

    (1) LL:LeftLeft,也称为"左左"。插入或删除一个节点后,根节点的左子树的左子树还有非空子节点,导致"根的左子树的高度"比"根的右子树的高度"大2,导致AVL树失去了平衡。
         例如,在上面LL情况中,由于"根节点(8)的左子树(4)的左子树(2)还有非空子节点",而"根节点(8)的右子树(12)没有子节点";导致"根节点(8)的左子树(4)高度"比"根节点(8)的右子树(12)"高2。

    (2) LR:LeftRight,也称为"左右"。插入或删除一个节点后,根节点的左子树的右子树还有非空子节点,导致"根的左子树的高度"比"根的右子树的高度"大2,导致AVL树失去了平衡。
         例如,在上面LR情况中,由于"根节点(8)的左子树(4)的左子树(6)还有非空子节点",而"根节点(8)的右子树(12)没有子节点";导致"根节点(8)的左子树(4)高度"比"根节点(8)的右子树(12)"高2。

    (3) RL:RightLeft,称为"右左"。插入或删除一个节点后,根节点的右子树的左子树还有非空子节点,导致"根的右子树的高度"比"根的左子树的高度"大2,导致AVL树失去了平衡。
         例如,在上面RL情况中,由于"根节点(8)的右子树(12)的左子树(10)还有非空子节点",而"根节点(8)的左子树(4)没有子节点";导致"根节点(8)的右子树(12)高度"比"根节点(8)的左子树(4)"高2。

    (4) RR:RightRight,称为"右右"。插入或删除一个节点后,根节点的右子树的右子树还有非空子节点,导致"根的右子树的高度"比"根的左子树的高度"大2,导致AVL树失去了平衡。
         例如,在上面RR情况中,由于"根节点(8)的右子树(12)的右子树(14)还有非空子节点",而"根节点(8)的左子树(4)没有子节点";导致"根节点(8)的右子树(12)高度"比"根节点(8)的左子树(4)"高2。

    3. 旋转对应的方法

    3.1. LL的情况

    LL失去平衡的情况,可以通过一次旋转让AVL树恢复平衡。如下图:

    图中左边是旋转之前的树,右边是旋转之后的树。从中可以发现,旋转之后的树又变成了AVL树,而且该旋转只需要一次即可完成。
    对于LL旋转,你可以这样理解为:LL旋转是围绕"失去平衡的AVL根节点"进行的,也就是节点k2;而且由于是LL情况,即左左情况,就用手抓着"左孩子,即k1"使劲摇。将k1变成根节点,k2变成k1的右子树,"k1的右子树"变成"k2的左子树"。

    LL旋转代码:

    /*
     * LL:左左对应的情况(左单旋转)。
     *
     * 返回值:旋转后的根节点
     */
    template <class T>
    AVLTreeNode<T>* AVLTree<T>::leftLeftRotation(AVLTreeNode<T>* k2)
    {
        AVLTreeNode<T>* k1;
    
        k1 = k2->left;
        k2->left = k1->right;
        k1->right = k2;
    
        k2->height = max( height(k2->left), height(k2->right)) + 1;
        k1->height = max( height(k1->left), k2->height) + 1;
    
        return k1;
    }

    3.2. RR的旋转

    理解了LL之后,RR就相当容易理解了。RR是与LL对称的情况!RR恢复平衡的旋转方法如下:

    图中左边是旋转之前的树,右边是旋转之后的树。RR旋转也只需要一次即可完成。

    代码:

    /*
     * RR:右右对应的情况(右单旋转)。
     *
     * 返回值:旋转后的根节点
     */
    template <class T>
    AVLTreeNode<T>* AVLTree<T>::rightRightRotation(AVLTreeNode<T>* k1)
    {
        AVLTreeNode<T>* k2;
    
        k2 = k1->right;
        k1->right = k2->left;
        k2->left = k1;
    
        k1->height = max( height(k1->left), height(k1->right)) + 1;
        k2->height = max( height(k2->right), k1->height) + 1;
    
        return k2;
    }

    3.3. LR的旋转

    LR失去平衡的情况,需要经过两次旋转才能让AVL树恢复平衡。如下图:

    第一次旋转是围绕"k1"进行的"RR旋转",第二次是围绕"k3"进行的"LL旋转"。

    代码:

    /*
     * LR:左右对应的情况(左双旋转)。
     *
     * 返回值:旋转后的根节点
     */
    template <class T>
    AVLTreeNode<T>* AVLTree<T>::leftRightRotation(AVLTreeNode<T>* k3)
    {
        k3->left = rightRightRotation(k3->left);
    
        return leftLeftRotation(k3);
    }

    3.4. RL的旋转

    RL是与LR的对称情况!RL恢复平衡的旋转方法如下:

    第一次旋转是围绕"k3"进行的"LL旋转",第二次是围绕"k1"进行的"RR旋转"。

    代码:

    /*
     * RL:右左对应的情况(右双旋转)。
     *
     * 返回值:旋转后的根节点
     */
    template <class T>
    AVLTreeNode<T>* AVLTree<T>::rightLeftRotation(AVLTreeNode<T>* k1)
    {
        k1->right = leftLeftRotation(k1->right);
    
        return rightRightRotation(k1);
    }

    4. 插入节点

    /* 
     * 将结点插入到AVL树中,并返回根节点
     *
     * 参数说明:
     *     tree AVL树的根结点
     *     key 插入的结点的键值
     * 返回值:
     *     根节点
     */
    template <class T>
    AVLTreeNode<T>* AVLTree<T>::insert(AVLTreeNode<T>* &tree, T key)
    {
        if (tree == NULL) 
        {
            // 新建节点
            tree = new AVLTreeNode<T>(key, NULL, NULL);
            if (tree==NULL)
            {
                cout << "ERROR: create avltree node failed!" << endl;
                return NULL;
            }
        }
        else if (key < tree->key) // 应该将key插入到"tree的左子树"的情况
        {
            tree->left = insert(tree->left, key);
            // 插入节点后,若AVL树失去平衡,则进行相应的调节。
            if (height(tree->left) - height(tree->right) == 2)
            {
                if (key < tree->left->key)
                    tree = leftLeftRotation(tree);
                else
                    tree = leftRightRotation(tree);
            }
        }
        else if (key > tree->key) // 应该将key插入到"tree的右子树"的情况
        {
            tree->right = insert(tree->right, key);
            // 插入节点后,若AVL树失去平衡,则进行相应的调节。
            if (height(tree->right) - height(tree->left) == 2)
            {
                if (key > tree->right->key)
                    tree = rightRightRotation(tree);
                else
                    tree = rightLeftRotation(tree);
            }
        }
        else //key == tree->key)
        {
            cout << "添加失败:不允许添加相同的节点!" << endl;
        }
    
        tree->height = max( height(tree->left), height(tree->right)) + 1;
    
        return tree;
    }
    
    template <class T>
    void AVLTree<T>::insert(T key)
    {
        insert(mRoot, key);
    }

    5. 删除节点

    /* 
     * 删除结点(z),返回根节点
     *
     * 参数说明:
     *     tree AVL树的根结点
     *     z 待删除的结点
     * 返回值:
     *     根节点
     */
    template <class T>
    AVLTreeNode<T>* AVLTree<T>::remove(AVLTreeNode<T>* &tree, AVLTreeNode<T>* z)
    {
        // 根为空 或者 没有要删除的节点,直接返回NULL。
        if (tree==NULL || z==NULL)
            return NULL;
    
        if (z->key < tree->key)        // 待删除的节点在"tree的左子树"中
        {
            tree->left = remove(tree->left, z);
            // 删除节点后,若AVL树失去平衡,则进行相应的调节。
            if (height(tree->right) - height(tree->left) == 2)
            {
                AVLTreeNode<T> *r =  tree->right;
                if (height(r->left) > height(r->right))
                    tree = rightLeftRotation(tree);
                else
                    tree = rightRightRotation(tree);
            }
        }
        else if (z->key > tree->key)// 待删除的节点在"tree的右子树"中
        {
            tree->right = remove(tree->right, z);
            // 删除节点后,若AVL树失去平衡,则进行相应的调节。
            if (height(tree->left) - height(tree->right) == 2)
            {
                AVLTreeNode<T> *l =  tree->left;
                if (height(l->right) > height(l->left))
                    tree = leftRightRotation(tree);
                else
                    tree = leftLeftRotation(tree);
            }
        }
        else    // tree是对应要删除的节点。
        {
            // tree的左右孩子都非空
            if ((tree->left!=NULL) && (tree->right!=NULL))
            {
                if (height(tree->left) > height(tree->right))
                {
                    // 如果tree的左子树比右子树高;
                    // 则(01)找出tree的左子树中的最大节点
                    //   (02)将该最大节点的值赋值给tree。
                    //   (03)删除该最大节点。
                    // 这类似于用"tree的左子树中最大节点"做"tree"的替身;
                    // 采用这种方式的好处是:删除"tree的左子树中最大节点"之后,AVL树仍然是平衡的。
                    AVLTreeNode<T>* max = maximum(tree->left);
                    tree->key = max->key;
                    tree->left = remove(tree->left, max);
                }
                else
                {
                    // 如果tree的左子树不比右子树高(即它们相等,或右子树比左子树高1)
                    // 则(01)找出tree的右子树中的最小节点
                    //   (02)将该最小节点的值赋值给tree。
                    //   (03)删除该最小节点。
                    // 这类似于用"tree的右子树中最小节点"做"tree"的替身;
                    // 采用这种方式的好处是:删除"tree的右子树中最小节点"之后,AVL树仍然是平衡的。
                    AVLTreeNode<T>* min = maximum(tree->right);
                    tree->key = min->key;
                    tree->right = remove(tree->right, min);
                }
            }
            else
            {
                AVLTreeNode<T>* tmp = tree;
                tree = (tree->left!=NULL) ? tree->left : tree->right;
                delete tmp;
            }
        }
    
        return tree;
    }
    
    template <class T>
    void AVLTree<T>::remove(T key)
    {
        AVLTreeNode<T>* z; 
    
        if ((z = search(mRoot, key)) != NULL)
            mRoot = remove(mRoot, z);
    }

    本文来自http://www.cnblogs.com/skywang12345/p/3577360.html

  • 相关阅读:
    CSS3 页面跳转的动画效果
    JS/React 判断对象是否为空对象
    React 根据官方总结的规范
    ckeditor字数限制
    swfobject.js IE兼容问题
    Jcrop 做图片剪裁 在IE中无法显示问题解决办法
    WebApp 中用 hashchange 做路由解析
    全国省市区Json文件 ,做省市区联动很轻松
    解决用友U8删除用户时提示“用户已启用”不能删除的问题
    CFUpdate高速模式下出现Error #2038提示的解决方案
  • 原文地址:https://www.cnblogs.com/msymm/p/9752677.html
Copyright © 2011-2022 走看看