zoukankan
html css js c++ java
渐进记号的相关证明(使用极限的方式)
⎧
⎩
⎨
⎪
⎪
⎪
⎪
⎪
⎪
lim
f
(
n
)
g
(
n
)
>
0
⇔
f
(
n
)
=
Θ
(
g
(
n
)
)
lim
f
(
n
)
g
(
n
)
=
0
⇔
f
(
n
)
=
o
(
g
(
n
)
)
1. 证明
n
log
n
=
o
(
n
1
+
ϵ
)
n
log
n
n
1
+
ϵ
=
log
n
n
ϵ
⇒
ln
x
x
ϵ
⇒
1
ϵ
x
ϵ
⇒
0
查看全文
相关阅读:
Codeforces Round #594 (Div. 2) ABC题
Codeforces Round #596 (Div. 2) ABCD题
数据结构实验5——二叉树
数据结构实验4——字符串匹配
数据结构实验3——用栈求解算术表达式
友链
Codeforces Round #577 (Div. 2)
Educational Codeforces Round 70 (Rated for Div. 2)
Codeforces Round #578 (Div. 2)
2020 Multi-University Training Contest 10(待补
原文地址:https://www.cnblogs.com/mtcnn/p/9422147.html
最新文章
【现代程序设计】homework-06
【现代程序设计】homework-08
【现代程序设计】homework-05
【现代程序设计】homework-04
【现代程序设计】homework-03
【软件工程】week5-个人作业-敏捷开发方法初窥
centos7 创建sftp
com.netflix.discovery.DiscoveryClient : Completed shut down of DiscoveryClient
[vue/no-parsing-error] Parsing error: x-invalid-end-tag.eslint-plugin-vue
Vue语法
热门文章
You are using the runtime-only build of Vue where the template compiler is not available. Either pre-compile the templates into render functions, or use the compiler-included build.
Vue安装
ES基本语法
ES安装&常见错误
linux 启动oracle报cannot restore segment prot after reloc: Permission denied
Smarty include
2020牛客多校第一场 F J
CTU Open Contest 2019 ABF题解
UCF Local Programming Contest 2015
CDUT2020寒假训练第一场 题解
Copyright © 2011-2022 走看看