1. pairwise
from sklearm.metrics.pairwise import pairwise_distance
计算一个样本集内部样本之间的距离:
D = np.array([np.linalg.norm(r1-r2) for r1 in X] for r2 in X)
当然,不要重复制造轮子,sklearn 已为我们提供了实现好的接口:
D = pairwise_distance(X, X)
# metric='euclidean'/'manhattan'/'cosine'
# squared=True/False,默认为 False