zoukankan      html  css  js  c++  java
  • 从二叉堆到左式堆

    设计一种类似二叉堆的堆结构,能高效地支持合并操作(即以 O(N)(最坏) 的时间处理一次 Merge),而仅使用一个数组(经典二叉堆的实现)似乎很难。 原因在于,合并似乎需要把一个数组拷贝到另一个数组中去,对于相同大小的堆这将花费 Θ(N)。正因如此,所有支持高效合并的高级数据结构都需要使用指针。

    1. 左式堆的性质

    左式堆不是理想平衡的(perfectly balanced),而实际上是趋于非常不平衡。

    定义:Npl(X):Null path length,为从节点 X 到任一个没有两个儿子(左孩子 && 右孩子)的结点的最短路径的长度。因此,会有以下基本性质:

    • 具有 0 个或 1 个儿子的结点的 Npl 为 0
    • Npl(NULL) = -1

    左式堆性质是:对于堆中的每一个结点 X,左儿子的 0 路径长度至少与右儿子的 0 路径长度一样大。最终会使得树向左侧增加深度,

    还有一点需要注意的是,任一结点的零路径长度比它的诸儿子结点的零路径长度的最小值多1。这个结论也适用于少于两个儿子的结点,比如某树只有根节点和其左孩子(或者右孩子),此时根节点和左孩子的 Npl 均为 0,但据前面的定义可知,此时的右孩子(左孩子)因为为 NULL,所以为 -1,上述结论依然成立。

    2. C 实现

    // leftheap.h
    typedef int ElementType;
    struct TreeNode;
    typedef struct TreeNode* PriorityQueue;
    
    // 仅实现两个左式堆的 Merge
    PriorityQueue Merge (PriorityQueue H1, PriorityQueue H2);
    
    // leftheap.c
    struct TreeNode {
        ElementType Element;
        PriorityQueue Left;
        PriorityQueue Right;
        int Npl;
    };
    • Merge 函数的实现:

      static PriorityQueue Merge1 (PriorityQueue H1, PriorityQueue H2) {
              if (!H1->Left)
                  H1->Left = H2;
              else {
                  H1->Right = Merge(H1->Right, H2);
                  if (H1->Left->Npl < H1->Right->Npl)
                      SwapChild(H1);         // H1 的左右孩子指针交换
                  H1->Npl = H1->Right->Npl + 1;
              }
              return H1;
      }
      
      PriorityQueue Merge (PriorityQueue H1, PriorityQueue H2) {
          if (!H1) return H2;
          if (!H2) return H1;
          if (H1->Element < H2->Element) {
              return Merge1(H1, H2);
          }
      }

    单节点的插入可以转换为特殊的 Merge;

  • 相关阅读:
    stm32自带的flash分布图
    leetcode21
    使用redis缓存数据需要注意的问题以及个人的一些思考和理解
    Chapter 2 Open Book——2
    spring管理事务需要注意的
    如何避免在简单业务逻辑上面的细节上面出错
    leetcode387
    黑天鹅-简记
    java方法中只有值传递,没有引用传递
    Chapter 2 Open Book——1
  • 原文地址:https://www.cnblogs.com/mtcnn/p/9423507.html
Copyright © 2011-2022 走看看