zoukankan      html  css  js  c++  java
  • 优先级队列(python)

    # -*- coding:utf-8 -*-
    
    class Array(object):
    
        def __init__(self, size=32):
            self._size = size
            self._items = [None] * size
    
        def __getitem__(self, index):
            return self._items[index]
    
        def __setitem__(self, index, value):
            self._items[index] = value
    
        def __len__(self):
            return self._size
    
        def clear(self, value=None):
            for i in range(len(self._items)):
                self._items[i] = value
    
        def __iter__(self):
            for item in self._items:
                yield item
    
    class MaxHeap(object):
       
        def __init__(self, maxsize=None):
            self.maxsize = maxsize
            self._elements = Array(maxsize)
            self._count = 0
    
        def __len__(self):
            return self._count
    
        def add(self, value):
            if self._count >= self.maxsize:
                raise Exception('full')
            self._elements[self._count] = value
            self._count += 1
            self._siftup(self._count-1)  
    
        def _siftup(self, ndx):
            if ndx > 0:
                parent = int((ndx-1)/2)
                if self._elements[ndx] > self._elements[parent]:    
                    self._elements[ndx], self._elements[parent] = self._elements[parent], self._elements[ndx]
                    self._siftup(parent)   
    
        def extract(self):
            if self._count <= 0:
                raise Exception('empty')
            value = self._elements[0]    
            self._count -= 1
            self._elements[0] = self._elements[self._count]    
            self._siftdown(0)   
            return value
    
        def _siftdown(self, ndx):
            left = 2 * ndx + 1
            right = 2 * ndx + 2
            # determine which node contains the larger value
            largest = ndx
            if (left < self._count and     # 有左孩子
                    self._elements[left] >= self._elements[largest] and
                    self._elements[left] >= self._elements[right]):  # 原书这个地方没写实际上找的未必是largest
                largest = left
            elif right < self._count and self._elements[right] >= self._elements[largest]:
                largest = right
            if largest != ndx:
                self._elements[ndx], self._elements[largest] = self._elements[largest], self._elements[ndx]
                self._siftdown(largest)
    
    
    class PriorityQueue(object):
        def __init__(self, maxsize):
            self.maxsize = maxsize
            self._maxheap = MaxHeap(maxsize)
    
        def push(self, priority, value):
            entry = (priority, value)    
            self._maxheap.add(entry)
    
        def pop(self, with_priority=False):
            entry = self._maxheap.extract()
            if with_priority:
                return entry
            else:
                return entry[1]
    
        def is_empty(self):
            return len(self._maxheap) == 0
    
    
    def test_priority_queue():
        size = 5
        pq = PriorityQueue(size)
        pq.push(5, 'purple')
        pq.push(0, 'white')
        pq.push(3, 'orange')
        pq.push(1, 'black')
    
        res = []
        while not pq.is_empty():
            res.append(pq.pop())
        assert res == ['purple', 'orange', 'black', 'white']
  • 相关阅读:
    PowerShell(0)Windows PowerShell交互界面
    WIN8的特性
    利用笔记本的WiFi做AP共享网络
    MD5和SHA加密测试
    WMI操作示例
    购买Microsoft Technet订阅,免费获得微软几乎所有的产品序列号“用于评估”,
    une petite bébé
    为ESX5主机配置多路径共享存储(以MD3000I为例)
    获取网卡信息
    CISCO交换机端口回环的处理方法备忘
  • 原文地址:https://www.cnblogs.com/muzinan110/p/11167091.html
Copyright © 2011-2022 走看看