zoukankan      html  css  js  c++  java
  • 深度学习原理与框架-卷积网络细节-三代物体检测算法 1.R-CNN 2.Fast R-CNN 3.Faster R-CNN

    目标检测的选框操作:第一步:找出一些边缘信息,进行图像合并,获得少量的边框信息

    1.R-CNN,

    第一步:进行图像的选框,对于选出来的框,使用卷积计算其相似度,选择最相似ROI的选框,即最大值抑制ROI,进行了选框的合并

    第二步:对每一个选出来的框进行回归和分类,回归的目的是为了对选框位置信息进行调整,分类是获得目标结果。

    存在的问题,对每一个图像都要进行一次卷积,很多地方都是进行了重复的卷积操作

    2. Fast R-CNN 对于一个图像而言,先对图像进行卷积操作,然后选框选出图像的感兴趣的区域,送入到全连接层进行分类和回归, 选框操作和卷积操作是分开的,不是一个端对端的操作

    3. Faster R-CNN 加入了一个proposals,用于进行选框操作,

    第一步:对图像进行卷积操作

    第二步:使用proposals进行选框操作, 每一个点存在9种框的类型

    第三步:对选出来的框对应特征进行分类和回归操作

    对于proposals的每一个点都进行分类和回归来判断矩阵框的位置,即上述矩形框有9种位置信息

  • 相关阅读:
    linux最简单项目部署
    sql索引
    /etc/profile和~/.bash_profile区别
    Linux下查找软件的目录位置
    为什么要使用消息队列?
    idea中常用的快捷键
    PAT 甲级 1023 Have Fun with Numbers (20分)
    PAT《算法笔记》
    Text 2
    Text-1
  • 原文地址:https://www.cnblogs.com/my-love-is-python/p/10515831.html
Copyright © 2011-2022 走看看