题意:有AB两个字符串,用A中连续的K串匹配B全串,问不同的方案总数
n<=1000,m<=200,k<=m
思路:设dp[k,i,j]为用k串 A中前i个字符匹配B中前j个字符的方案总数
首先dp[k,i,j]=0 (a[i]<>b[j])
然后就是考虑dp[k,i,j]能否从dp[k,i-1,j-1]即前一个连续转移来 dp[k,i,j]=dp[k,i,j]+dp[k,i-1,j-1]
还有就是另起一串 dp[k,i,j]=dp[k-1,1,j-1]+dp[k-1,2,j-1]+...+dp[k-1,i-1,j-1]
转移用前缀和优化,空间用滚动数组优化
暴力
1 const mo=1000000007; 2 var dp:array[0..50,0..500,0..500]of longint; 3 a,b:ansistring; 4 n,m,k1,i,j,k,x,ans:longint; 5 6 begin 7 //assign(input,'1.in'); reset(input); 8 //assign(output,'1.out'); rewrite(output); 9 readln(n,m,k1); 10 readln(a); 11 readln(b); 12 dp[0,0,0]:=1; 13 for i:=1 to n do 14 if a[i]=b[1] then dp[1,i,1]:=1; 15 for i:=1 to k1 do 16 for j:=1 to n do 17 for k:=1 to m do 18 begin 19 if a[j]<>b[k] then continue; 20 if a[j-1]<>b[k-1] then 21 for x:=1 to j-1 do dp[i,j,k]:=(dp[i,j,k]+dp[i-1,x,k-1]) mod mo 22 else 23 begin 24 for x:=1 to j-1 do dp[i,j,k]:=(dp[i,j,k]+dp[i-1,x,k-1]) mod mo; 25 dp[i,j,k]:=(dp[i,j,k]+dp[i,j-1,k-1]) mod mo; 26 end; 27 end; 28 for i:=1 to n do ans:=(ans+dp[k1,i,m]) mod mo; 29 writeln(ans); 30 // close(input); 31 // close(output); 32 end.
加了优化
1 const mo=1000000007; 2 var dp,f:array[0..1,0..1000,0..200]of longint; 3 a,b:ansistring; 4 n,m,k1,i,v,j,k,ans:longint; 5 6 begin 7 //assign(input,'1.in'); reset(input); 8 //assign(output,'1.out'); rewrite(output); 9 readln(n,m,k1); 10 readln(a); 11 readln(b); 12 dp[0,0,0]:=1; 13 for i:=0 to n do f[0,i,0]:=1; 14 for i:=1 to k1 do 15 begin 16 v:=1-v; 17 fillchar(f[v],sizeof(f[v]),0); 18 fillchar(dp[v],sizeof(dp[v]),0); 19 for j:=1 to n do 20 for k:=1 to m do 21 begin 22 if a[j]=b[k] then 23 begin 24 dp[v,j,k]:=f[1-v,j-1,k-1]; 25 if a[j-1]=b[k-1] then dp[v,j,k]:=(dp[v,j,k]+dp[v,j-1,k-1]) mod mo; 26 end; 27 f[v,j,k]:=(f[v,j-1,k]+dp[v,j,k]) mod mo; 28 end; 29 end; 30 for i:=1 to n do ans:=(ans+dp[v,i,m]) mod mo; 31 writeln(ans); 32 //close(input); 33 //close(output); 34 end.