zoukankan      html  css  js  c++  java
  • [*^*]模型参数和参数量计算 thop库

    模型参数和参数量计算 thop库

    THOP: PyTorch-OpCounter

    How to install

    pip install thop (now continously intergrated on Github actions)

    OR

    pip install --upgrade git+https://github.com/Lyken17/pytorch-OpCounter.git

    How to use

    • Basic usage

      from torchvision.models import resnet50
      from thop import profile
      model = resnet50()
      input = torch.randn(1, 3, 224, 224)
      macs, params = profile(model, inputs=(input, ))
      
    • Define the rule for 3rd party module.

      class YourModule(nn.Module):
          # your definition
      def count_your_model(model, x, y):
          # your rule here
      
      input = torch.randn(1, 3, 224, 224)
      macs, params = profile(model, inputs=(input, ), 
                              custom_ops={YourModule: count_your_model})
      
    • Improve the output readability

      Call thop.clever_format to give a better format of the output.

      from thop import clever_format
      macs, params = clever_format([macs, params], "%.3f")
      

    Results of Recent Models

    The implementation are adapted from torchvision. Following results can be obtained using benchmark/evaluate_famous_models.py.

    Model Params(M) MACs(G)
    alexnet 61.10 0.77
    vgg11 132.86 7.74
    vgg11_bn 132.87 7.77
    vgg13 133.05 11.44
    vgg13_bn 133.05 11.49
    vgg16 138.36 15.61
    vgg16_bn 138.37 15.66
    vgg19 143.67 19.77
    vgg19_bn 143.68 19.83
    resnet18 11.69 1.82
    resnet34 21.80 3.68
    resnet50 25.56 4.14
    resnet101 44.55 7.87
    resnet152 60.19 11.61
    wide_resnet101_2 126.89 22.84
    wide_resnet50_2 68.88 11.46
    Model Params(M) MACs(G)
    resnext50_32x4d 25.03 4.29
    resnext101_32x8d 88.79 16.54
    densenet121 7.98 2.90
    densenet161 28.68 7.85
    densenet169 14.15 3.44
    densenet201 20.01 4.39
    squeezenet1_0 1.25 0.82
    squeezenet1_1 1.24 0.35
    mnasnet0_5 2.22 0.14
    mnasnet0_75 3.17 0.24
    mnasnet1_0 4.38 0.34
    mnasnet1_3 6.28 0.53
    mobilenet_v2 3.50 0.33
    shufflenet_v2_x0_5 1.37 0.05
    shufflenet_v2_x1_0 2.28 0.15
    shufflenet_v2_x1_5 3.50 0.31
    shufflenet_v2_x2_0 7.39 0.60
    inception_v3 27.16 5.75

  • 相关阅读:
    jsp自定义标签
    spring JDBC 返回list<map>集合
    AWS 身份及验证服务(四)
    AWS 存储服务(三)
    AWS 核心服务概述(二)
    云计算和 AWS 概述(一)
    AWS 解决方案架构师考点(Storage)
    利用 AWS 无服务架构之语音合成
    AWS 云上安全最佳实践
    持续集成 Jenkins +Gitlab + SSH 自动发布 HTML 代码
  • 原文地址:https://www.cnblogs.com/nanmi/p/15160324.html
Copyright © 2011-2022 走看看