zoukankan
html css js c++ java
javascript图片渐变轮换效果
<
html
>
<
head
>
<
title
>
图片渐变轮换效果
</
title
>
<
meta name
=
"
generator
"
content
=
"
editplus
"
>
<
meta name
=
"
author
"
content
=
"
5dshow.com
"
>
</
head
>
<
body
>
<
p
>
图片渐变轮换效果(IE),请等几秒钟看效果
</
p
>
<
a href
=
"
#
"
id
=
"
javascript.a
"
><
img src
=
"
UploadFiles/2006-6/69311881.jpg
"
id
=
"
javascript.img
"
border
=
0
style
=
"
filter:blendTrans(duration=2)
"
width
=
"
240
"
height
=
"
180
"
></
a
>
<
script
>
<!--
var
ImgSrc
=
new
Array();
//
图片地址
ImgSrc[
0
]
=
"
UploadFiles/2006-6/69846915.jpg
"
ImgSrc[
1
]
=
"
UploadFiles/2006-7/73557027.jpg
"
ImgSrc[
2
]
=
"
UploadFiles/2006-7/73557027.jpg
"
ImgSrc[
3
]
=
"
UploadFiles/2006-7/79256345.jpg
"
for
(
var
i
=
0
;i
<
ImgSrc.length;i
++
)
{(
new
Image()).src
=
ImgSrc[i];}
//
预加载图片
var
ImgAlt
=
new
Array();
//
鼠标放上去显示的文字
ImgAlt[
0
]
=
"
合纵堂相簿1
"
ImgAlt[
1
]
=
"
合纵堂相簿2
"
ImgAlt[
2
]
=
"
合纵堂相簿3
"
ImgAlt[
3
]
=
"
合纵堂相簿4
"
var
ImgHerf
=
new
Array();
//
链接
ImgHerf[
0
]
=
"
0/5dshow/archives/2006/200669165010.html
"
ImgHerf[
1
]
=
"
0/5dshow/archives/2006/200669165010.html
"
ImgHerf[
2
]
=
"
0/qiaomai/archives/2006/200673211517.html
"
ImgHerf[
3
]
=
"
0/qiaomai/archives/2006/200679131446.html
"
var
step
=
0
;
function
slideit()
{
var
oImg
=
document.getElementById(
"
javascript.img
"
);
if
(document.all)
{oImg.filters.blendTrans.apply();}
oImg.src
=
"
ImgSrc[step]
"
;
document.getElementById(
"
javascript.a
"
).href
=
"
ImgHerf[step]
"
;
oImg.title
=
ImgAlt[step];
if
(document.all)
{oImg.filters.blendTrans.play();}
step
=
(step
<
(ImgSrc.length
-
1
))
?
(step
+
1
):
0
;
(
new
Image()).src
=
ImgSrc[step];
//
加载下一个图片
}
setInterval(
"
slideit()
"
,
3000
);
//
-->
</
script
>
</
body
>
</
html
>
查看全文
相关阅读:
python开发第一篇:初识python
python开发第二篇 :python基础
nfs下的exportfs命令和nfs客户端重新挂载
centos7安装epel源
vim查找替换
keepalive基础知识
nginx基本配置各个参数说明
centos7下搭建nfs服务
systemctl命令
mariadb入门
原文地址:https://www.cnblogs.com/nasdaqhe/p/542017.html
最新文章
hdu 4311(枚举)
辛普森三八律
均值不等式新证
$$\int_0^{nh}x(xh)\cdots (xnh)dx=h^{n+2}\int_0^nx(x1)\cdots (xn)dx$$
高考是条不归路
The remainder term of the $n+1$point closed NewtonCotes formula
南京大学2005年数学分析第六题另证
浙江自考本科的一些事项(一)
南京大学2005年数学分析第六题另证
均值不等式新证
热门文章
$$\int_0^{nh}x(xh)\cdots (xnh)dx=h^{n+2}\int_0^nx(x1)\cdots (xn)dx$$
海量数据分析快准稳!GaussDB(for MySQL) HTAP只读分析特性详解
鸿蒙轻内核源码分析:异常钩子模块系统中断异常,如何转储异常信息
要想下班早,微服务架构少不了
区块链交易隐私如何保证?华为零知识证明技术实战解析
掌握渗透测试,从Web漏洞靶场搭建开始
什么是漏洞扫描?
OKR与影响地图,别再傻傻分不清
论文解读丨表格识别模型TableMaster
智能算法综述
Copyright © 2011-2022 走看看