在Fresco源码解析 - 初始化过程分析章节中,
我们分析了Fresco的初始化过程,两个initialize方法中都用到了 ImagePipelineFactory类。
ImagePipelineFactory.initialize(context);
会创建一个所有参数都使用默认值的ImagePipelineConfig来初始化ImagePipeline。
ImagePipelineFactory.initialize(imagePipelineConfig)会首先用 imagePipelineConfig创建一个ImagePipelineFactory的实例 - sInstance。
sInstance = new ImagePipelineFactory(imagePipelineConfig);
然后,初始化Drawee时,在PipelineDraweeControllerBuilderSupplier的构造方法中通过 ImagePipelineFactory.getInstance()获取这个实例。
Fresco.java
private static void initializeDrawee(Context context) { sDraweeControllerBuilderSupplier = new PipelineDraweeControllerBuilderSupplier(context); SimpleDraweeView.initialize(sDraweeControllerBuilderSupplier); } PipelineDraweeControllerBuilderSupplier.java public PipelineDraweeControllerBuilderSupplier(Context context) { this(context, ImagePipelineFactory.getInstance()); } public PipelineDraweeControllerBuilderSupplier( Context context, ImagePipelineFactory imagePipelineFactory) { this(context, imagePipelineFactory, null); }
PipelineDraweeControllerBuilderSupplier还有一个构造方法,就是 this(context, imagePipelineFactory, null)调用的构造方法。
public PipelineDraweeControllerBuilderSupplier( Context context, ImagePipelineFactory imagePipelineFactory, Set<ControllerListener> boundControllerListeners) { mContext = context; mImagePipeline = imagePipelineFactory.getImagePipeline(); mPipelineDraweeControllerFactory = new PipelineDraweeControllerFactory( context.getResources(), DeferredReleaser.getInstance(), imagePipelineFactory.getAnimatedDrawableFactory(), UiThreadImmediateExecutorService.getInstance()); mBoundControllerListeners = boundControllerListeners; }
其中,mImagePipeline = imagePipelineFactory.getImagePipeline()用于获取ImagePipeline的实例。
ImagePipelineFactory.java
public ImagePipeline getImagePipeline() { if (mImagePipeline == null) { mImagePipeline = new ImagePipeline( getProducerSequenceFactory(), mConfig.getRequestListeners(), mConfig.getIsPrefetchEnabledSupplier(), getBitmapMemoryCache(), getEncodedMemoryCache(), mConfig.getCacheKeyFactory()); } return mImagePipeline; }
可以看出mImagePipeline是一个单例,构造ImagePipeline时用到的mConfig就是本片最开始讲到的 ImagePipelineConfig imagePipelineConfig。
经过这个过程,一个ImagePipeline就被创建好了,下面我们具体解析一下ImagePipeline的每个参数。
因为ImagePipelineFactory用ImagePipelineConfig来创建一个ImagePipeline,我们首先分析一下ImagePipelineConfig的源码。
public class ImagePipelineConfig { private final Supplier<MemoryCacheParams> mBitmapMemoryCacheParamsSupplier; private final CacheKeyFactory mCacheKeyFactory; private final Context mContext; private final Supplier<MemoryCacheParams> mEncodedMemoryCacheParamsSupplier; private final ExecutorSupplier mExecutorSupplier; private final ImageCacheStatsTracker mImageCacheStatsTracker; private final AnimatedDrawableUtil mAnimatedDrawableUtil; private final AnimatedImageFactory mAnimatedImageFactory; private final ImageDecoder mImageDecoder; private final Supplier<Boolean> mIsPrefetchEnabledSupplier; private final DiskCacheConfig mMainDiskCacheConfig; private final MemoryTrimmableRegistry mMemoryTrimmableRegistry; private final NetworkFetcher mNetworkFetcher; private final PoolFactory mPoolFactory; private final ProgressiveJpegConfig mProgressiveJpegConfig; private final Set<RequestListener> mRequestListeners; private final boolean mResizeAndRotateEnabledForNetwork; private final DiskCacheConfig mSmallImageDiskCacheConfig; private final PlatformBitmapFactory mPlatformBitmapFactory; // other methods }
上图可以看出,获取图像的第一站是Memeory Cache,然后是Disk Cache,最后是Network,而Memory和Disk都是缓存在本地的数据,MemoryCacheParams就用于表示它们的缓存策略。
MemoryCacheParams.java
/** * Pass arguments to control the cache's behavior in the constructor. * * @param maxCacheSize The maximum size of the cache, in bytes. * @param maxCacheEntries The maximum number of items that can live in the cache. * @param maxEvictionQueueSize The eviction queue is an area of memory that stores items ready * for eviction but have not yet been deleted. This is the maximum * size of that queue in bytes. * @param maxEvictionQueueEntries The maximum number of entries in the eviction queue. * @param maxCacheEntrySize The maximum size of a single cache entry. */ public MemoryCacheParams( int maxCacheSize, int maxCacheEntries, int maxEvictionQueueSize, int maxEvictionQueueEntries, int maxCacheEntrySize) { this.maxCacheSize = maxCacheSize; this.maxCacheEntries = maxCacheEntries; this.maxEvictionQueueSize = maxEvictionQueueSize; this.maxEvictionQueueEntries = maxEvictionQueueEntries; this.maxCacheEntrySize = maxCacheEntrySize; }
关于每个参数的作用,注释已经写得很清楚,不再赘述。
CacheKeyFactory会为ImageRequest创建一个索引 - CacheKey。
/** * Factory methods for creating cache keys for the pipeline. */ public interface CacheKeyFactory { /** * @return {@link CacheKey} for doing bitmap cache lookups in the pipeline. */ public CacheKey getBitmapCacheKey(ImageRequest request); /** * @return {@link CacheKey} for doing encoded image lookups in the pipeline. */ public CacheKey getEncodedCacheKey(ImageRequest request); /** * @return a {@link String} that unambiguously indicates the source of the image. */ public Uri getCacheKeySourceUri(Uri sourceUri); }
ExecutorSupplier会根据ImagePipeline的使用场景获取不同的Executor。
public interface ExecutorSupplier { /** Executor used to do all disk reads, whether for disk cache or local files. */ Executor forLocalStorageRead(); /** Executor used to do all disk writes, whether for disk cache or local files. */ Executor forLocalStorageWrite(); /** Executor used for all decodes. */ Executor forDecode(); /** Executor used for all image transformations, such as transcoding, resizing, and rotating. */ Executor forTransform(); /** Executor used for background operations, such as postprocessing. */ Executor forBackground(); }
ImageCacheStatsTracker 作为 Cache 埋点工具,可以统计Cache的各种操作数据。
public interface ImageCacheStatsTracker { /** Called whenever decoded images are put into the bitmap cache. */ public void onBitmapCachePut(); /** Called on a bitmap cache hit. */ public void onBitmapCacheHit(); /** Called on a bitmap cache miss. */ public void onBitmapCacheMiss(); /** Called whenever encoded images are put into the encoded memory cache. */ public void onMemoryCachePut(); /** Called on an encoded memory cache hit. */ public void onMemoryCacheHit(); /** Called on an encoded memory cache hit. */ public void onMemoryCacheMiss(); /** * Called on an staging area hit. * * <p>The staging area stores encoded images. It gets the images before they are written * to disk cache. */ public void onStagingAreaHit(); /** Called on a staging area miss hit. */ public void onStagingAreaMiss(); /** Called on a disk cache hit. */ public void onDiskCacheHit(); /** Called on a disk cache miss. */ public void onDiskCacheMiss(); /** Called if an exception is thrown on a disk cache read. */ public void onDiskCacheGetFail(); /** * Registers a bitmap cache with this tracker. * * <p>Use this method if you need access to the cache itself to compile your stats. */ public void registerBitmapMemoryCache(CountingMemoryCache<?, ?> bitmapMemoryCache); /** * Registers an encoded memory cache with this tracker. * * <p>Use this method if you need access to the cache itself to compile your stats. */ public void registerEncodedMemoryCache(CountingMemoryCache<?, ?> encodedMemoryCache); }
剩下的几个参数与Drawable关联比较大,我们下一篇再分析。