仙人掌
圆方树是用来解决仙人掌图的问题的,那什么是仙人掌图呢?
如图,不存在边同时属于多个环的无向连通图是一棵仙人掌
圆方树
定义
原先的仙人掌图,通过一些奇妙的方法,可以转化为一棵由圆点,方点和树边构成的树——圆方树,具体构建方法如下
原仙人掌的每一个点为圆点,对于每个环都新建一个方点,方点向环上的每一个圆点连边,就构成了圆方树。
构建方法
用(tarjan)算法求出点双,对于每一个点双新建一个方点与环上的点相连,注意一条边连接两个点的不算点双。
代码:
void tarjan(int x,int f){
dfn[x]=low[x]=++tim;
st[++tot]=x;
for(int i=G.head[x];i;i=G.nex[i])
if(G.v[i]!=f){
int y=G.v[i];
if(!dfn[y]){
tarjan(y,x);
low[x]=min(low[x],low[y]);
if(low[y]==dfn[x]){
siz++;
while(st[tot]!=y)
T.add(n+siz,st[tot--]);
T.add(n+siz,st[tot--]);
T.add(n+siz,x);
}
}
else
if(y!=f)
low[x]=min(low[x],dfn[y]);
}
}
在别人的博客里学到了一种更妙的构造方法:
记(ring[i])表示点i是否在一个环里。对于某个点x,我们要从它遍历到它的子节点y时,先将(ring[x])赋为0;然后,我们在(tarjan)的时候,若有某个点x,对于其一条连向点y的出边,满足(dfn[y]<dfn[x]),则表明y为其祖先,我们就找到了一个环,于是建方点、连新边,并使该环中每个节点的(ring)变为1;于是,回溯回那个点(x),若(ring)依然(=0),则表明那个y没有与之形成环,故边((x,y))是树边,在(T)中连上它。
以及构造的代码:
void tarjan(int x){
dfn[x]=++tim;
for(int i=G.head[x];i;i=G.nex[i])
if(f[x]!=G.v[i]){
int y=G.v[i];
if(dfn[y]){
f[y]=x;
ring[x]=0;
tarjan(y);
if(!ring[x]) T.add(x,y);
}
else
if(dfn[y]<dfn[x]){
int z=x;
tot++;
while(z!=y){
T.add(z,tot);
ring[z]=1;
z=f[z];
}
T.add(tot,y);
ring[y]=1;
}
}
}
广义圆方树
普通圆方树只能解决仙人掌图上的问题,而广义圆方树则可以将所有无向图转化为圆方树处理。
广义圆方树性质:圆点方点相间,不存在两个‘’相同形状‘’的点相连。
构造方法:
把一条边连接两个点也看成一个点双,原本两个圆点有一条边相连,现在在中间插入一个方点间隔开就好了
(从别人blog搞来的图片)
代码
void tarjan(int x,int f){
dfn[x]=low[x]=++tim;
st[++tot]=x;
for(int i=G.head[x];i;i=G.nex[i])
if(G.v[i]!=f){
int y=G.v[i];
if(!dfn[y]){
tarjan(y,x);
low[x]=min(low[x],low[y]);
if(low[y]>=dfn[x]){
siz++;
while(st[tot]!=y)
T.add(n+siz,st[tot--]);
T.add(n+siz,st[tot--]);
T.add(n+siz,x);
}
}
else
low[x]=min(low[x],dfn[y]);
}
}
例题
比较晚了,先整理这些,以后再补吧