和题解大致相同的思路
/* HDU 6041 - I Curse Myself [ 图论,找环,最大k和 ] | 2017 Multi-University Training Contest 1 题意: 给出一个仙人掌图,求最小的k棵生成树 N <= 1000, M <= 2000, K <= 1e5 分析: 将问题转化为从每个环中选出一条边,求最大的k个和 首先找环,随便怎么找,比如 在保证每条边只走一次的情况下遍历到祖先节点就说明有环,记录一下前驱就能找出来 然后是每个环两两合并,此时相当于两个vector,res.size() = k,cir[i].size() = Mi, ∑mi = M 由于 M<=2000,k <= 1e5,故选择在堆中的元素是cir[i]中的元素 这样就能保证复杂度为 O( ∑K*log(mi) ) = O( K*log(∏mi) ) <= O(K*M) 编码时长: INF(-8) */ #include <bits/stdc++.h> using namespace std; #define LL long long const LL MOD = 1LL<<32; const int N = 1005; struct Edge { int to, next, w; bool vis; }edge[N<<2]; int head[N], tot; void init() { memset(head, -1, sizeof(head)); tot = 0; } void addedge(int u, int v, int w) { edge[tot].to = v; edge[tot].next = head[u]; edge[tot].vis = 0; edge[tot].w = w; head[u] = tot++; } int n, m, block; vector<int> cir[N]; bool vis[N]; int f[N], g[N];//父节点和连着的边 void dfs(int u) { for (int i = head[u]; i != -1; i = edge[i].next) { int v = edge[i].to; if (edge[i].vis) continue; edge[i].vis = 1; edge[i^1].vis = 1; if (vis[v]) { ++block; int t = u; do{ cir[block].push_back(edge[g[t]].w); t = f[t]; }while (t != v); cir[block].push_back(edge[i].w); } else { vis[v] = 1, f[v] = u, g[v] = i; dfs(v); } } } void find_cir() { for (int i = 0; i < N; i++) cir[i].clear(); memset(vis, 0, sizeof(vis)); block = 0; vis[1] = 1; dfs(1); } struct Node { int x, id; bool operator < (const Node& b) const {//大的先出去 return x < b.x; } }; priority_queue<Node> Q; vector<int> res, tmp; void solve(int k) { res.clear(); res.push_back(0); for (int i = 1; i <= block; ++i) { while (!Q.empty()) Q.pop(); tmp.clear(); for (auto& x : cir[i]) Q.push(Node{x+res[0], 0}); while (tmp.size() < k && !Q.empty()) { auto p = Q.top(); Q.pop(); tmp.push_back(p.x); if (p.id+1 < res.size()) { ++p.id; p.x += res[p.id] - res[p.id-1]; Q.push(p); } } res.clear(); for (auto& x : tmp) res.push_back(x); } } int main() { int tt = 0, u, v, w, k; while (~scanf("%d%d", &n, &m)) { init(); LL sum = 0, ans = 0; for (int i = 1; i <= m; i++) { scanf("%d%d%d", &u, &v, &w); sum += w; addedge(u, v, w); addedge(v, u, w); } find_cir(); scanf("%d", &k); solve(k); for (int i = 0; i < res.size(); i++) ans += (i+1) * ( (sum-res[i])) % MOD; printf("Case #%d: %lld ", ++tt, ans%MOD); } }
限制第k小的大小后,满足这个限制的答案的数量具有单调性,故还可以二分第k小 暴力DFS+剪枝 验证,就是代码不算好写
#include <bits/stdc++.h> using namespace std; #define LL long long const int N = 1005; const LL MOD = 1LL<<32; struct Edge { int to, next, w; bool vis; }edge[N<<2]; int head[N], tot; void init() { memset(head, -1, sizeof(head)); tot = 0; } void addedge(int u, int v, int w) { edge[tot].w = w; edge[tot].to = v; edge[tot].next = head[u]; edge[tot].vis = 0; head[u] = tot++; } int block; vector<int> cir[N]; int f[N], g[N], vis[N]; void dfs(int u) { for (int i = head[u]; ~i; i = edge[i].next) { if (edge[i].vis) continue; edge[i].vis = 1; edge[i^1].vis = 1; int v = edge[i].to; if (vis[v]) { ++block; int t = u; do { cir[block].push_back(edge[g[t]].w); t = f[t]; }while (t != v); cir[block].push_back(edge[i].w); } else { vis[v] = 1; f[v] = u, g[v] = i; dfs(v); } } } void find_cir() { for (int i = 0; i < N; i++) cir[i].clear(); memset(vis, 0, sizeof(vis)); block = 0; vis[1] = 1; dfs(1); } bool cmp (const int &x, const int &y) { return x > y; } int n, m, k, num; LL mid, res[100005]; void dfs(int i, LL sum) { if (num > k) return; if (sum > mid) return; if (i == block+1) { res[++num] = sum; return; } for (auto& x : cir[i]) { if (sum + x > mid) break; dfs(i+1, sum+x); } } LL BinaryFind(LL l, LL r) { while (l <= r) { mid = (l+r)>>1; num = 0; dfs(1, 0); if (num >= k) r = mid-1; else l = mid+1; } return l; } int main() { int t = 0, x, y, z; while (~scanf("%d%d", &n, &m)) { init(); LL base = 0, ans = 0; for (int i = 1; i <= m; i++) { scanf("%d%d%d", &x, &y, &z); addedge(x, y, z), addedge(y, x, z); base += z; } find_cir(); scanf("%d", &k); printf("Case #%d: ", ++t); if (block == 0) { printf("%lld ", base%MOD); continue; } for (int i = 1; i <= block; i++) { sort(cir[i].begin(), cir[i].end(), cmp); base -= cir[i][0]; for (int j = 1; j < cir[i].size(); j++) cir[i][j] = cir[i][0] - cir[i][j]; cir[i][0] = 0; } int Max = 1; for (int i = 1; i <= block && Max < k; i++) Max *= cir[i].size(); if (k > Max) { k = Max; mid = 2e9; num = 0; dfs(1, 0); } else { mid = BinaryFind(1, 2e9); mid--; num = 0; dfs(1, 0); for (int i = num+1; i <= k; i++) res[i] = mid+1; } sort(res+1, res+k+1); for (int i = 1; i <= k; i++) ans += i * (base+res[i]) % MOD; printf("%lld ", ans% MOD); } }