zoukankan      html  css  js  c++  java
  • HDU 6041

    和题解大致相同的思路

    /*
    HDU 6041 - I Curse Myself [ 图论,找环,最大k和 ]  |  2017 Multi-University Training Contest 1
    题意:
    	给出一个仙人掌图,求最小的k棵生成树
    	N <= 1000, M <= 2000, K <= 1e5
    分析:
    	将问题转化为从每个环中选出一条边,求最大的k个和
    	首先找环,随便怎么找,比如 在保证每条边只走一次的情况下遍历到祖先节点就说明有环,记录一下前驱就能找出来
    	然后是每个环两两合并,此时相当于两个vector,res.size() = k,cir[i].size() = Mi, ∑mi = M
    	由于 M<=2000,k <= 1e5,故选择在堆中的元素是cir[i]中的元素
    	这样就能保证复杂度为 O( ∑K*log(mi) ) = O( K*log(∏mi) ) <= O(K*M)
    
    编码时长: INF(-8)
    */
    #include <bits/stdc++.h>
    using namespace std;
    #define LL long long
    const LL MOD = 1LL<<32;
    const int N = 1005;
    struct Edge {
        int to, next, w;
        bool vis;
    }edge[N<<2];
    int head[N], tot;
    void init() {
        memset(head, -1, sizeof(head));
        tot = 0;
    }
    void addedge(int u, int v, int w) {
        edge[tot].to = v; edge[tot].next = head[u];
        edge[tot].vis = 0; edge[tot].w = w;
        head[u] = tot++;
    }
    int n, m, block;
    vector<int> cir[N];
    bool vis[N];
    int f[N], g[N];//父节点和连着的边
    void dfs(int u)
    {
        for (int i = head[u]; i != -1; i = edge[i].next)
        {
            int v = edge[i].to;
            if (edge[i].vis) continue;
            edge[i].vis = 1;
            edge[i^1].vis = 1;
            if (vis[v])
            {
                ++block;
                int t = u;
                do{
                    cir[block].push_back(edge[g[t]].w);
                    t = f[t];
                }while (t != v);
                cir[block].push_back(edge[i].w);
            }
            else
            {
                vis[v] = 1, f[v] = u, g[v] = i;
                dfs(v);
            }
        }
    }
    void find_cir()
    {
        for (int i = 0; i < N; i++) cir[i].clear();
        memset(vis, 0, sizeof(vis));
        block = 0;
        vis[1] = 1;
        dfs(1);
    }
    struct Node {
        int x, id;
        bool operator < (const Node& b) const {//大的先出去
            return x < b.x;
        }
    };
    priority_queue<Node> Q;
    vector<int> res, tmp;
    void solve(int k)
    {
        res.clear();
        res.push_back(0);
        for (int i = 1; i <= block; ++i)
        {
            while (!Q.empty()) Q.pop();
            tmp.clear();
            for (auto& x : cir[i])
                Q.push(Node{x+res[0], 0});
            while (tmp.size() < k && !Q.empty())
            {
                auto p = Q.top(); Q.pop();
                tmp.push_back(p.x);
                if (p.id+1 < res.size())
                {
                    ++p.id;
                    p.x += res[p.id] - res[p.id-1];
                    Q.push(p);
                }
            }
            res.clear();
            for (auto& x : tmp) res.push_back(x);
        }
    }
    int main()
    {
        int tt = 0, u, v, w, k;
        while (~scanf("%d%d", &n, &m))
        {
            init();
            LL sum = 0, ans = 0;
            for (int i = 1; i <= m; i++)
            {
                scanf("%d%d%d", &u, &v, &w);
                sum += w;
                addedge(u, v, w); addedge(v, u, w);
            }
            find_cir();
            scanf("%d", &k);
            solve(k);
            for (int i = 0; i < res.size(); i++)
                ans += (i+1) * ( (sum-res[i])) % MOD;
            printf("Case #%d: %lld
    ", ++tt, ans%MOD);
        }
    }
    

      

    限制第k小的大小后,满足这个限制的答案的数量具有单调性,故还可以二分第k小 暴力DFS+剪枝 验证,就是代码不算好写

    #include <bits/stdc++.h>
    using namespace std;
    #define LL long long
    const int N = 1005;
    const LL MOD = 1LL<<32;
    struct Edge {
        int to, next, w;
        bool vis;
    }edge[N<<2];
    int head[N], tot;
    void init() {
        memset(head, -1, sizeof(head));
        tot = 0;
    }
    void addedge(int u, int v, int w) {
        edge[tot].w = w; edge[tot].to = v; edge[tot].next = head[u];
        edge[tot].vis = 0;
        head[u] = tot++;
    }
    int block;
    vector<int> cir[N];
    int f[N], g[N], vis[N];
    void dfs(int u)
    {
        for (int i = head[u]; ~i; i = edge[i].next)
        {
            if (edge[i].vis) continue;
            edge[i].vis = 1;
            edge[i^1].vis = 1;
            int v = edge[i].to;
            if (vis[v])
            {
                ++block;
                int t = u;
                do {
                    cir[block].push_back(edge[g[t]].w);
                    t = f[t];
                }while (t != v);
                cir[block].push_back(edge[i].w);
            }
            else
            {
                vis[v] = 1;
                f[v] = u, g[v] = i;
                dfs(v);
            }
        }
    }
    void find_cir()
    {
        for (int i = 0; i < N; i++) cir[i].clear();
        memset(vis, 0, sizeof(vis));
        block = 0;
        vis[1] = 1;
        dfs(1);
    }
    bool cmp (const int &x, const int &y) {
        return x > y;
    }
    int n, m, k, num;
    LL mid, res[100005];
    void dfs(int i, LL sum)
    {
        if (num > k) return;
        if (sum > mid) return;
        if (i == block+1)
        {
            res[++num] = sum; return;
        }
        for (auto& x : cir[i])
        {
            if (sum + x > mid) break;
            dfs(i+1, sum+x);
        }
    }
    LL BinaryFind(LL l, LL r)
    {
        while (l <= r)
        {
            mid = (l+r)>>1;
            num = 0;
            dfs(1, 0);
            if (num >= k) r = mid-1;
            else l = mid+1;
        }
        return l;
    }
    int main()
    {
        int t = 0, x, y, z;
        while (~scanf("%d%d", &n, &m))
        {
            init();
            LL base = 0, ans = 0;
            for (int i = 1; i <= m; i++)
            {
                scanf("%d%d%d", &x, &y, &z);
                addedge(x, y, z), addedge(y, x, z);
                base += z;
            }
            find_cir();
            scanf("%d", &k);
            printf("Case #%d: ", ++t);
            if (block == 0)
            {
                printf("%lld
    ", base%MOD); continue;
            }
            for (int i = 1; i <= block; i++)
            {
                sort(cir[i].begin(), cir[i].end(), cmp);
                base -= cir[i][0];
                for (int j = 1; j < cir[i].size(); j++)
                    cir[i][j] = cir[i][0] - cir[i][j];
                cir[i][0] = 0;
            }
            int Max = 1;
            for (int i = 1; i <= block && Max < k; i++)
                Max *= cir[i].size();
            if (k > Max)
            {
                k = Max;
                mid = 2e9;
                num = 0;
                dfs(1, 0);
            }
            else
            {
                mid = BinaryFind(1, 2e9);
                mid--;
                num = 0;
                dfs(1, 0);
                for (int i = num+1; i <= k; i++) res[i] = mid+1;
            }
            sort(res+1, res+k+1);
            for (int i = 1; i <= k; i++)
                ans += i * (base+res[i]) % MOD;
            printf("%lld
    ", ans% MOD);
        }
    }
    

      

    我自倾杯,君且随意
  • 相关阅读:
    P1117 [NOI2016] 优秀的拆分 SA+DP
    P3346 [ZJOI2015]诸神眷顾的幻想乡 广义SAM
    P3705 [SDOI2017]新生舞会 分数规划+费用流
    P2336 [SCOI2012]喵星球上的点名 SA+树状数组
    543. Diameter of Binary Tree
    451. Sort Characters By Frequency
    563. Binary Tree Tilt
    703. Kth Largest Element in a Stream
    743. Network Delay Time
    kaggle _Titanic: Machine Learning from Disaster
  • 原文地址:https://www.cnblogs.com/nicetomeetu/p/7251782.html
Copyright © 2011-2022 走看看