zoukankan      html  css  js  c++  java
  • hdu 5037 Frog 贪心 dp

    哎,注意细节啊,,,,,,,思维的严密性。。。。。

    11699193 2014-09-22 08:46:42 Accepted 5037 796MS 1864K 2204 B G++ czy

    Frog

    Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Total Submission(s): 454    Accepted Submission(s): 96

    Problem Description
       Once upon a time, there is a little frog called Matt. One day, he came to a river.
       The river could be considered as an axis.Matt is standing on the left bank now (at position 0). He wants to cross the river, reach the right bank (at position M). But Matt could only jump for at most L units, for example from 0 to L.
    As the God of Nature, you must save this poor frog.There are N rocks lying in the river initially. The size of the rock is negligible. So it can be indicated by a point in the axis. Matt can jump to or from a rock as well as the bank.
       You don't want to make the things that easy. So you will put some new rocks into the river such that Matt could jump over the river in maximal steps.And you don't care the number of rocks you add since you are the God.
       Note that Matt is so clever that he always choose the optimal way after you put down all the rocks.
     
    Input
       The first line contains only one integer T, which indicates the number of test cases.
       For each test case, the first line contains N, M, L (0<=N<=2*10^5,1<=M<=10^9, 1<=L<=10^9).
       And in the following N lines, each line contains one integer within (0, M) indicating the position of rock.
     
    Output
       For each test case, just output one line “Case #x: y", where x is the case number (starting from 1) and y is the maximal number of steps Matt should jump.
     
    Sample Input
    2 1 10 5 5 2 10 3 3 6
     
    Sample Output
    Case #1: 2 Case #2: 4
     
    Source
     
    Recommend
    hujie   |   We have carefully selected several similar problems for you:  5041 5040 5039 5038 5036 
      1 #include<iostream>
      2 #include<cstring>
      3 #include<cstdlib>
      4 #include<cstdio>
      5 #include<algorithm>
      6 #include<cmath>
      7 #include<queue>
      8 #include<map>
      9 #include<string>
     10 
     11 #define N 200005
     12 #define M 15
     13 #define mod 10000007
     14 //#define p 10000007
     15 #define mod2 100000000
     16 #define ll long long
     17 #define LL long long
     18 #define maxi(a,b) (a)>(b)? (a) : (b)
     19 #define mini(a,b) (a)<(b)? (a) : (b)
     20 
     21 using namespace std;
     22 
     23 int T;
     24 int n;
     25 int m,l;
     26 int dp[N];
     27 int p[N];
     28 
     29 void ini()
     30 {
     31     memset(dp,0,sizeof(dp));
     32     scanf("%d%d%d",&n,&m,&l);
     33     for(int i=1;i<=n;i++){
     34         scanf("%d",&p[i]);
     35     }
     36     sort(p+1,p+1+n);
     37     p[n+1]=m;
     38 }
     39 
     40 
     41 void solve()
     42 {
     43     int sh;
     44     int te;
     45     int now;
     46     int end;
     47     int d;
     48     int tnow;
     49     now=0;
     50     d=1;
     51     for(int i=1;i<=n+1;){
     52         dp[i]=dp[i-1];
     53         te=(p[i]-now);
     54         sh=te/(l+1);
     55         dp[i]+=sh*2+1;
     56         if(te%(l+1)!=0){
     57             //dp[i]--;
     58           //  if(sh!=0 && te%(l+1)<d){
     59                // dp[i]--;
     60                // tnow=now+(sh-1)*(l+1)+d;
     61                // end=tnow+l;
     62                // now=p[i];
     63 
     64            // }
     65            // else{
     66                 now=now+sh*(l+1);
     67                 tnow=now;
     68                 end=tnow+l;
     69                 now=p[i];
     70            // }
     71 
     72             i++;
     73             while(i<=n+1 && p[i]<=end){
     74                 dp[i]=dp[i-1];
     75                 now=p[i];
     76                 i++;
     77             }
     78             d=l+1-(now-tnow);
     79         }
     80         else{
     81             dp[i]--;
     82             tnow=now+(sh-1)*(l+1)+d;
     83             end=tnow+l;
     84             now=p[i];
     85             i++;
     86             while(i<=n+1 && p[i]<=end){
     87                 dp[i]=dp[i-1];
     88                 now=p[i];
     89                 i++;
     90             }
     91             d=l+1-(now-tnow);
     92         }
     93     }
     94 }
     95 
     96 void out()
     97 {
     98     printf("%d
    ",dp[n+1]);
     99 }
    100 
    101 int main()
    102 {
    103     //freopen("data.in","r",stdin);
    104     //freopen("data.out","w",stdout);
    105     scanf("%d",&T);
    106     for(int cnt=1;cnt<=T;cnt++)
    107    // while(T--)
    108    // while(scanf("%d%d",&n,&m)!=EOF)
    109     {
    110       //  if(n==0 && m==0) break;
    111         printf("Case #%d: ",cnt);
    112         ini();
    113         solve();
    114         out();
    115     }
    116 
    117     return 0;
    118 }
  • 相关阅读:
    3.09_面向对象(包、修饰符和内部类)
    3.08_面向对象(多态的概述及其代码体现)
    3.07_面向对象(继承)
    3.06_面向对象(代码块的概述和分类)
    3.05_面向对象(java文档说明书的制作过程)
    3.04_面向对象基础((main方法的格式详细解释)
    3.03_面向对象(static关键字及内存图)
    3.02面向对象(创建一个对象的步骤)
    3.01_面向对象基础(构造方法)
    2.02_Java语言基础(循环结构概述)
  • 原文地址:https://www.cnblogs.com/njczy2010/p/3985370.html
Copyright © 2011-2022 走看看