zoukankan      html  css  js  c++  java
  • 【Python】装饰器理解

    以下文章转载自:点这里
    关于装饰器相关的帖子记录在这里: 廖雪峰thy专栏, stackflow

    Python的函数是对象


    简单的例子:

    def shout(word="yes"):
        return word.capitalize()+"!"
    
    print shout()
    # outputs : 'Yes!'
    
    # 作为一个对象,你可以讲函数赋值给另一个对象
    scream = shout
    
    # 注意到这里我们并没有使用括号:我们不是调用函数,而是将函数'shout'赋给变量'scream'
    # 这意味着,你可以通过'scream'调用'shout'
    
    print scream()
    # outputs : 'Yes!'
    
    # 不仅如此,你可以删除老的名称'shout',但是通过'scream'依旧可以访问原有函数
    
    del shout
    try:
        print shout()
    except NameError, e:
        print e
        #outputs: "name 'shout' is not defined"
    
    print scream()
    # outputs: 'Yes!'
    

    Python函数另一个有趣的特性是,函数可以被定义在另一个函数里面

    def talk():
        # 你可以定义一个函数
        def whisper(word="yes"):
            return word.lower()+"..."
    
        # ... 并且立刻调用
        print whisper()
    
    # 每次当你调用"talk", 都会定义"whisper"
    # 并且在"talk"中被调用
    talk()
    # outputs:
    # "yes..."
    
    #但是在"talk"外部,函数"whisper"不存在!
    try:
        print whisper()
    except NameError, e:
        print e
        #outputs : "name 'whisper' is not defined"*
    

    函数引用


    1. 函数可以赋值给一个变量
    2. 函数可以定义在另一个函数内部

    即,这也意味着一个函数可以返回另一个函数, 让我们来看另一段代码:

    def getTalk(type="shout"):
    
        # 定义函数
        def shout(word="yes"):
            return word.capitalize()+"!"
    
        def whisper(word="yes") :
            return word.lower()+"...";
    
        # 返回函数
        if type == "shout":
            # 没有使用"()", 并不是要调用函数,而是要返回函数对象
            return shout
        else:
            return whisper
    
    # 如何使用?
    
    # 将函数返回值赋值给一个变量
    talk = getTalk()
    
    # 我们可以打印下这个函数对象
    print talk
    #outputs : <function shout at 0xb7ea817c>
    
    # 这个对象是函数的返回值
    print talk()
    #outputs : Yes!
    
    # 不仅如此,你还可以直接使用之
    print getTalk("whisper")()
    #outputs : yes...
    

    但是稍等,如果你可以返回一个函数,那么你也可以将函数作为参数传递

    def doSomethingBefore(func):
        print "I do something before then I call the function you gave me"
        print func()
    
    doSomethingBefore(scream)
    #outputs:
    #I do something before then I call the function you gave me
    #Yes!
    

    装饰器就是封装器,可以让你在被装饰函数之前或之后执行代码,而不必修改函数本身

    手工装饰器


    如何书写一个装饰器

    # 装饰器是一个以另一个函数为参数的函数
    def my_shiny_new_decorator(a_function_to_decorate):
    
        # 在这里,装饰器定义一个函数: 包装器.
        # 这个函数将原始函数进行包装,以达到在原始函数之前、之后执行代码的目的
        def the_wrapper_around_the_original_function():
    
            # 将你要在原始函数之前执行的代码放到这里
            print "Before the function runs"
    
            # 调用原始函数(需要带括号)
            a_function_to_decorate()
    
            # 将你要在原始函数之后执行的代码放到这里
            print "After the function runs"
    
        # 代码到这里,函数‘a_function_to_decorate’还没有被执行
        # 我们将返回刚才创建的这个包装函数
        # 这个函数包含原始函数及要执行的附加代码,并且可以被使用
        return the_wrapper_around_the_original_function
    
    # 创建一个函数
    def a_stand_alone_function():
        print "I am a stand alone function, don't you dare modify me"
    
    a_stand_alone_function()
    #outputs: I am a stand alone function, don't you dare modify me
    
    # 好了,在这里你可以装饰这个函数,扩展其行为
    # 将函数传递给装饰器,装饰器将动态地将其包装在任何你想执行的代码中,然后返回一个新的函数
    a_stand_alone_function_decorated = my_shiny_new_decorator(a_stand_alone_function)
    
    # 调用新函数,可以看到装饰器的效果
    a_stand_alone_function_decorated()
    #outputs:
    #Before the function runs
    #I am a stand alone function, don't you dare modify me
    #After the function runs
    

    到这里,或许你想每次调用a_stand_alone_function都使用a_stand_alone_function_decorated替代之 很简单,只需要将a_stand_alone_functionmy_shiny_new_decorator装饰返回

    a_stand_alone_function = my_shiny_new_decorator(a_stand_alone_function)
    a_stand_alone_function()
    #outputs:
    #Before the function runs
    #I am a stand alone function, don't you dare modify me
    #After the function runs
    
    # 这就是装饰器做的事情!
    

    装饰器阐述


    前面的例子,使用装饰器语法

    @my_shiny_new_decorator
    def another_stand_alone_function():
        print "Leave me alone"
    
    another_stand_alone_function()
    #outputs:
    #Before the function runs
    #Leave me alone
    #After the function runs
    

    是的,就是这么简单. @decorator是下面代码的简写

    nother_stand_alone_function = my_shiny_new_decorator(another_stand_alone_function)
    

    装饰器只是 装饰器模式的python实现

    python代码中还存在其他几个经典的设计模式,以方便开发,例如迭代器iterators

    当然,你可以累加装饰器

    def bread(func):
        def wrapper():
            print "</''''''>"
            func()
            print "<\______/>"
        return wrapper
    
    def ingredients(func):
        def wrapper():
            print "#tomatoes#"
            func()
            print "~salad~"
        return wrapper
    
    def sandwich(food="--ham--"):
        print food
    
    sandwich()
    #outputs: --ham--
    
    #累加两个装饰器
    sandwich = bread(ingredients(sandwich))
    sandwich()
    #outputs:
    #</''''''>
    # #tomatoes#
    # --ham--
    # ~salad~
    #<\______/>
    

    使用python装饰器语法

    @bread
    @ingredients
    def sandwich(food="--ham--"):
        print food
    
    sandwich()
    #outputs:
    #</''''''>
    # #tomatoes#
    # --ham--
    # ~salad~
    #<\______/>
    

    装饰器位置的顺序很重要

    @ingredients
    @bread
    def strange_sandwich(food="--ham--"):
        print food
    
        strange_sandwich()
    #outputs:
    ##tomatoes#
    #</''''>
    # --ham--
    #<\______/>
    # ~salad~'
    

    后回答问题

    # bold装饰器
    def makebold(fn):
        def wrapper():
            # 在前后加入标签
            return "<b>" + fn() + "</b>"
        return wrapper
    
    # italic装饰器
    def makeitalic(fn):
        def wrapper():
            # 加入标签
            return "<i>" + fn() + "</i>"
        return wrapper
    
    @makebold
    @makeitalic
    def say():
        return "hello"
    
    print say()
    #outputs: <b><i>hello</i></b>
    
    # 等价的代码
    def say():
        return "hello"
    say = makebold(makeitalic(say))
    
    print say()
    #outputs: <b><i>hello</i></b>
    

    装饰器高级的用法


    向装饰器函数传递参数

    # 这不是黑魔法,你只需要让包装传递参数:
    def a_decorator_passing_arguments(function_to_decorate):
        def a_wrapper_accepting_arguments(arg1, arg2):
                print "I got args! Look:", arg1, arg2
                function_to_decorate(arg1, arg2)
        return a_wrapper_accepting_arguments
    # 当你调用装饰器返回的函数,实际上是调用包装函数,所以给包装函数传递参数即可将参数传给装饰器函数
    @a_decorator_passing_arguments
    def print_full_name(first_name, last_name):
        print "My name is", first_name, last_name
    
    print_full_name("Peter", "Venkman")
    # outputs:
    #I got args! Look: Peter Venkman
    #My name is Peter Venkman
    

    装饰方法

    Python中对象的方法和函数是一样的,除了对象的方法首个参数是指向当前对象的引用(self)。这意味着你可以用同样的方法构建一个装饰器,只是必须考虑self

    def method_friendly_decorator(method_to_decorate):
        def wrapper(self, lie):
            lie = lie - 3 # very friendly, decrease age even more :-)
            return method_to_decorate(self, lie)
        return wrapper
    
    class Lucy(object):
    
        def __init__(self):
            self.age = 32
    
        @method_friendly_decorator
        def sayYourAge(self, lie):
            print "I am %s, what did you think?" % (self.age + lie)
    
    l = Lucy()
    l.sayYourAge(-3)
    #outputs: I am 26, what did you think?
    

    当然,你可以构造一个更加通用的装饰器,可以作用在任何函数或对象方法上,而不必关系其参数 使用: *args, **kwargs

    def a_decorator_passing_arbitrary_arguments(function_to_decorate):
        # 包装函数可以接受任何参数
        def a_wrapper_accepting_arbitrary_arguments(*args, **kwargs):
            print "Do I have args?:"
            print args
            print kwargs
            # 然后你可以解开参数, *args,**kwargs
            # 如果你对此不是很熟悉,可以参考 http://www.saltycrane.com/blog/2008/01/how-to-use-args-and-kwargs-in-python/
            function_to_decorate(*args, **kwargs)
        return a_wrapper_accepting_arbitrary_arguments
    
    @a_decorator_passing_arbitrary_arguments
    def function_with_no_argument():
        print "Python is cool, no argument here."
    
    function_with_no_argument()
    #outputs
    #Do I have args?:
    #()
    #{}
    #Python is cool, no argument here.
    
    @a_decorator_passing_arbitrary_arguments
    def function_with_arguments(a, b, c):
        print a, b, c
    
    function_with_arguments(1,2,3)
    #outputs
    #Do I have args?:
    #(1, 2, 3)
    #{}
    #1 2 3
    
    @a_decorator_passing_arbitrary_arguments
    def function_with_named_arguments(a, b, c, platypus="Why not ?"):
        print "Do %s, %s and %s like platypus? %s" %
        (a, b, c, platypus)
    
    function_with_named_arguments("Bill", "Linus", "Steve", platypus="Indeed!")
    #outputs
    #Do I have args ? :
    #('Bill', 'Linus', 'Steve')
    #{'platypus': 'Indeed!'}
    #Do Bill, Linus and Steve like platypus? Indeed!
    
    class Mary(object):
        def __init__(self):
            self.age = 31
    
        @a_decorator_passing_arbitrary_arguments
        def sayYourAge(self, lie=-3): # You can now add a default value
            print "I am %s, what did you think ?" % (self.age + lie)
    
    m = Mary()
    m.sayYourAge()
    #outputs
    # Do I have args?:
    #(<__main__.Mary object at 0xb7d303ac>,)
    #{}
    #I am 28, what did you think?
    

    向装饰器传递参数

    装饰器必须使用函数作为参数,所以这看起来会有些复杂,你不能直接传递参数给装饰器本身

    在开始处理这个问题前,看一点提醒

    # 装饰器是普通的方法
    def my_decorator(func):
        print "I am a ordinary function"
        def wrapper():
            print "I am function returned by the decorator"
            func()
        return wrapper
    
    # 所以,你可以不通过@调用它
    
    def lazy_function():
        print "zzzzzzzz"
    
    decorated_function = my_decorator(lazy_function)
    #outputs: I am a ordinary function
    
    # It outputs "I am a ordinary function", because that's just what you do:
    
    # 调用一个函数,没有什么特别
    @my_decorator
    def lazy_function():
        print "zzzzzzzz"
    
    #outputs: I am a ordinary function
    

    上面两个形式本质上是相同的, "my_decorator" 被调用.所以当你使用"@my_decorator",告诉python一个函数被变量"my_decorator"标记 这十分重要,因为你提供的标签直接指向装饰器...或者不是,继续

    # 声明一个用于创建装饰器的函数
    def decorator_maker():
    
        print "I make decorators! I am executed only once: "+
              "when you make me create a decorator."
    
        def my_decorator(func):
            print "I am a decorator! I am executed only when you decorate a function."
    
            def wrapped():
                print ("I am the wrapper around the decorated function. "
                      "I am called when you call the decorated function. "
                      "As the wrapper, I return the RESULT of the decorated function.")
                return func()
    
            print "As the decorator, I return the wrapped function."
            return wrapped
    
        print "As a decorator maker, I return a decorator"
        return my_decorator
    
    # Let's create a decorator. It's just a new function after all.
    # 创建一个装饰器,本质上只是一个函数
    new_decorator = decorator_maker()
    #outputs:
    #I make decorators! I am executed only once: when you make me create a decorator.
    #As a decorator maker, I return a decorator
    
    # 使用装饰器装饰函数
    
    def decorated_function():
        print "I am the decorated function."
    
    decorated_function = new_decorator(decorated_function)
    #outputs:
    #I am a decorator! I am executed only when you decorate a function.
    #As the decorator, I return the wrapped function
    
    # 调用被装饰函数
    decorated_function()
    #outputs:
    #I am the wrapper around the decorated function. I am called when you call the decorated function.
    #As the wrapper, I return the RESULT of the decorated function.
    #I am the decorated function.
    

    我们跳过中间变量,做同样的事情

    def decorated_function():
        print "I am the decorated function."
    decorated_function = decorator_maker()(decorated_function)
    #outputs:
    #I make decorators! I am executed only once: when you make me create a decorator.
    #As a decorator maker, I return a decorator
    #I am a decorator! I am executed only when you decorate a function.
    #As the decorator, I return the wrapped function.
    
    # 最后:
    decorated_function()    
    #outputs:
    #I am the wrapper around the decorated function. I am called when you call the decorated function.
    #As the wrapper, I return the RESULT of the decorated function.
    #I am the decorated function.
    

    使用装饰器语法,更简短

    @decorator_maker()
    def decorated_function():
        print "I am the decorated function."
    #outputs:
    #I make decorators! I am executed only once: when you make me create a decorator.
    #As a decorator maker, I return a decorator
    #I am a decorator! I am executed only when you decorate a function.
    #As the decorator, I return the wrapped function.
    
    #最终: 
    decorated_function()    
    #outputs:
    #I am the wrapper around the decorated function. I am called when you call the decorated function.
    #As the wrapper, I return the RESULT of the decorated function.
    #I am the decorated function.
    

    到这里,我们使用@调用一个函数

    回到问题,向装饰器本身传递参数,如果我们可以通过函数去创建装饰器,那么我们可以传递参数给这个函数,对么?

    def decorator_maker_with_arguments(decorator_arg1, decorator_arg2):
    
        print "I make decorators! And I accept arguments:", decorator_arg1, decorator_arg2
    
        def my_decorator(func):
            # 这里能传递参数的能力,是闭包的特性
            # 更多闭包的内容,参考 http://stackoverflow.com/questions/13857/can-you-explain-closures-as-they-relate-to-python
            print "I am the decorator. Somehow you passed me arguments:", decorator_arg1, decorator_arg2
    
            # 不要搞混了装饰器参数和函数参数
            def wrapped(function_arg1, function_arg2) :
                print ("I am the wrapper around the decorated function.
    "
                      "I can access all the variables
    "
                      "	- from the decorator: {0} {1}
    "
                      "	- from the function call: {2} {3}
    "
                      "Then I can pass them to the decorated function"
                      .format(decorator_arg1, decorator_arg2,
                              function_arg1, function_arg2))
                return func(function_arg1, function_arg2)
    
            return wrapped
    
        return my_decorator
    
    @decorator_maker_with_arguments("Leonard", "Sheldon")
    def decorated_function_with_arguments(function_arg1, function_arg2):
        print ("I am the decorated function and only knows about my arguments: {0}"
               " {1}".format(function_arg1, function_arg2))
    
    decorated_function_with_arguments("Rajesh", "Howard")
    #outputs:
    #I make decorators! And I accept arguments: Leonard Sheldon
    #I am the decorator. Somehow you passed me arguments: Leonard Sheldon
    #I am the wrapper around the decorated function. 
    #I can access all the variables 
    #   - from the decorator: Leonard Sheldon 
    #   - from the function call: Rajesh Howard 
    #Then I can pass them to the decorated function
    #I am the decorated function and only knows about my arguments: Rajesh Howard
    

    好了,that's it.参数可以设置为变量

    c1 = "Penny"
    c2 = "Leslie"
    
    @decorator_maker_with_arguments("Leonard", c1)
    def decorated_function_with_arguments(function_arg1, function_arg2):
        print ("I am the decorated function and only knows about my arguments:"
               " {0} {1}".format(function_arg1, function_arg2))
    
    decorated_function_with_arguments(c2, "Howard")
    #outputs:
    #I make decorators! And I accept arguments: Leonard Penny
    #I am the decorator. Somehow you passed me arguments: Leonard Penny
    #I am the wrapper around the decorated function. 
    #I can access all the variables 
    #   - from the decorator: Leonard Penny 
    #   - from the function call: Leslie Howard 
    #Then I can pass them to the decorated function
    #I am the decorated function and only knows about my arguments: Leslie Howard
    

    你可以看到,你可以使用像其它函数一样使用这个方法向装饰器传递参数.如果你愿意你甚至可以使用 arg *kwargs.

    但是记住,装饰器仅在Python代码导入时被调用一次,之后你不能动态地改变参数.当你使用"import x",函数已经被装饰,所以你不能改变什么

    练习:一个装饰装饰器的装饰器


    作为奖励,我将展示创建可以处理任何参数的装饰器代码片段. 毕竟,为了接收参数,必须使用另一个函数来创建装饰器

    让我们来给装饰器写一个装饰器:

    # 装饰 装饰器 的装饰器 (好绕.....)
    def decorator_with_args(decorator_to_enhance):
        """ 
        这个函数将作为装饰器使用
        它必须装饰另一个函数
        它将允许任何接收任意数量参数的装饰器
        方便你每次查询如何实现
        """
    
        # 同样的技巧传递参数
        def decorator_maker(*args, **kwargs):
    
            # 创建一个只接收函数的装饰器
            # 但是这里保存了从创建者传递过来的的参数
            def decorator_wrapper(func):
    
                # 我们返回原始装饰器的结果
                # 这是一个普通的函数,返回值是另一个函数
                # 陷阱:装饰器必须有这个特殊的签名,否则不会生效
                return decorator_to_enhance(func, *args, **kwargs)
    
            return decorator_wrapper
    
        return decorator_maker
    

    使用:

    # 你创建这个函数是作为一个装饰器,但是给它附加了一个装饰器
    # 别忘了,函数签名是: "decorator(func, *args, **kwargs)"
    @decorator_with_args 
    def decorated_decorator(func, *args, **kwargs): 
        def wrapper(function_arg1, function_arg2):
            print "Decorated with", args, kwargs
            return func(function_arg1, function_arg2)
        return wrapper
    
    # 然后,使用这个装饰器(your brand new decorated decorator)
    
    @decorated_decorator(42, 404, 1024)
    def decorated_function(function_arg1, function_arg2):
        print "Hello", function_arg1, function_arg2
    
    decorated_function("Universe and", "everything")
    #outputs:
    #Decorated with (42, 404, 1024) {}
    #Hello Universe and everything
    
    # Whoooot!
    

    我知道,到现在你一定会有这种感觉,就像你听一个人说“在理解递归之前,你必须首先了解递归”,但是现在,掌握这儿你有没有觉得很棒?

    装饰器使用最佳实践


    • 这是Python2.4的新特性,所以确保你的代码在2.4及之上的版本运行
    • 装饰器降低了函数调用的性能,记住这点
    • You can not un-decorate a function. There are hacks to create
      decorators that can be removed but nobody uses them. So once a
      function is decorated, it's done. For all the code.
    • 装饰器包装函数,所以很难debug

    Python2.5解决了最后一个问题,它提供functools模块,包含functools.wraps.这个函数会将被装饰函数的名称,模块,文档字符串拷贝给封装函数,有趣的是,functools.wraps是一个装饰器。

    # 调试,打印函数的名字
    def foo():
        print "foo"
    
    print foo.__name__
    #outputs: foo
    
    # 但当你使用装饰器,这一切变得混乱
    def bar(func):
        def wrapper():
            print "bar"
            return func()
        return wrapper
    
    @bar
    def foo():
        print "foo"
    
    print foo.__name__
    #outputs: wrapper
    
    # "functools" 可以改变这点
    import functools
    
    def bar(func):
        # 我们所说的 "wrapper", 封装 "func"
        @functools.wraps(func)
        def wrapper():
            print "bar"
            return func()
        return wrapper
    
    @bar
    def foo():
        print "foo"
    
    # 得到的是原始的名称, 而不是封装器的名称
    print foo.__name__
    #outputs: foo
    

    装饰器为何那么有用


    现在的问题是,我们用装饰器来坐什么?看起来很酷很强大,但是如果有实践的例子会更好.好了,有1000种可能。经典的用法是,在函数的外部,扩展一个函数的行为(你不需要改变这个函数),或者,为了调试的目的(我们不修改的原因是这是临时的),你可以使用装饰器扩展一些函数,而不用在这些函数中书写相同的函数实现一样的功能

    def benchmark(func):
        """
        装饰器打印一个函数的执行时间
        """
        import time
        def wrapper(*args, **kwargs):
            t = time.clock()
            res = func(*args, **kwargs)
            print func.__name__, time.clock()-t
            return res
        return wrapper
    
    def logging(func):
        """
        装饰器记录函数日志
        """
        def wrapper(*args, **kwargs):
            res = func(*args, **kwargs)
            print func.__name__, args, kwargs
            return res
        return wrapper
    
    def counter(func):
        """
        记录并打印一个函数的执行次数
        """
        def wrapper(*args, **kwargs):
            wrapper.count = wrapper.count + 1
            res = func(*args, **kwargs)
            print "{0} has been used: {1}x".format(func.__name__, wrapper.count)
            return res
        wrapper.count = 0
        return wrapper
    
    @counter
    @benchmark
    @logging
    def reverse_string(string):
        return str(reversed(string))
    
    print reverse_string("Able was I ere I saw Elba")
    print reverse_string("A man, a plan, a canoe, pasta, heros, rajahs, a coloratura, maps, snipe, percale, macaroni, a gag, a banana bag, a tan, a tag, a banana bag again (or a camel), a crepe, pins, Spam, a rut, a Rolo, cash, a jar, sore hats, a peon, a canal: Panama!")
    
    #outputs:
    #reverse_string ('Able was I ere I saw Elba',) {}
    #wrapper 0.0
    #wrapper has been used: 1x
    #ablE was I ere I saw elbA
    #reverse_string ('A man, a plan, a canoe, pasta, heros, rajahs, a coloratura, maps, snipe, percale, macaroni, a gag, a banana bag, a tan, a tag, a banana bag again (or a camel), a crepe, pins, Spam, a rut, a Rolo, cash, a jar, sore hats, a peon, a canal: Panama!',) {}
    #wrapper 0.0
    #wrapper has been used: 2x
    #!amanaP :lanac a ,noep a ,stah eros ,raj a ,hsac ,oloR a ,tur a ,mapS ,snip ,eperc a ,)lemac a ro( niaga gab ananab a ,gat a ,nat a ,gab ananab a ,gag a ,inoracam ,elacrep ,epins ,spam ,arutaroloc a ,shajar ,soreh ,atsap ,eonac a ,nalp a ,nam A
    

    装饰器意味着,你可以用正确的方法实现几乎所有的事情,而不必重写他们

    @counter
    @benchmark
    @logging
    def get_random_futurama_quote():
        import httplib
        conn = httplib.HTTPConnection("slashdot.org:80")
        conn.request("HEAD", "/index.html")
        for key, value in conn.getresponse().getheaders():
            if key.startswith("x-b") or key.startswith("x-f"):
                return value
        return "No, I'm ... doesn't!"
    
    print get_random_futurama_quote()
    print get_random_futurama_quote()
    
    #outputs:
    #get_random_futurama_quote () {}
    #wrapper 0.02
    #wrapper has been used: 1x
    #The laws of science be a harsh mistress.
    #get_random_futurama_quote () {}
    #wrapper 0.01
    #wrapper has been used: 2x
    #Curse you, merciful Poseidon!
    

    Python本身提供了一些装饰器:property,staticmethod,等等,

  • 相关阅读:
    Docker Swarm与Kubernetes对比分析如何选择?
    dockerMesos配置项是怎么解析的?案例详解
    Python爬虫如何提取百度搜索到的内容?案例教你
    python之urllib2是如何运用的?正确方法教你
    Python之解BS4库如何安装与使用?正确方法教你
    Python爬虫之Selenium环境如何正确配置?本文详细讲解
    Python爬虫之GET和POST请求然后正确运用详解
    Python怎么识别文字?正确 的方法详解
    Python爬虫如何获取页面内所有URL链接?本文详解
    在Java中,为什么十六进制数0xFF取反之后对应的十进制数是-256呢?
  • 原文地址:https://www.cnblogs.com/nju2014/p/5453357.html
Copyright © 2011-2022 走看看