zoukankan      html  css  js  c++  java
  • 通道的分离与合并,ROI,

    通道的分离与合并

        class Program
        {
            static void Main(String[] args)
            {
                Mat img = CvInvoke.Imread(@"C:UsersdellPicturesmach.jpg");
                Mat pic = new Mat();
                int ch=img.NumberOfChannels;
    
    
                VectorOfMat dst = new VectorOfMat(ch);
                CvInvoke.Split(img,dst);
                CvInvoke.Imshow("hello", img);
                Mat blue = dst[0];
                Mat green = dst[1];
                Mat red = dst[2];
    
                CvInvoke.Threshold(blue, blue, 200, 255, ThresholdType.Binary);
                CvInvoke.Threshold(green, green, 200, 255, ThresholdType.Binary);
                CvInvoke.Threshold(red, red, 200, 255, ThresholdType.Binary);
                CvInvoke.Merge(dst, pic);
                
                CvInvoke.Imshow("b", blue);
                CvInvoke.Imshow("g", green);
                CvInvoke.Imshow("r", red);
    
                CvInvoke.Imshow("m", pic);
                CvInvoke.WaitKey(0);
            }
    
        }

    效果如下:

    ROI

        class Program
        {
            static void Main(String[] args)
            {
                Mat img = CvInvoke.Imread(@"C:UsersdellPicturesmach.jpg");
                Mat logo = CvInvoke.Imread(@"C:UsersdellPicturesopencv.jpg");
                Mat ROI = new Mat(img, new Rectangle(20, 20, logo.Cols, logo.Rows));
                logo.CopyTo(ROI);
                CvInvoke.Imshow("roi", img);
                CvInvoke.WaitKey(0);
            }
    
        }

    MASK掩码

            static void Main(String[] args)
            {
                Mat img = CvInvoke.Imread(@"C:UsersdellPicturesmach.jpg");
                Mat logo = CvInvoke.Imread(@"C:UsersdellPicturesopencv.jpg");
                Mat mask = CvInvoke.Imread(@"C:UsersdellPicturesopencv.jpg", 0);
                CvInvoke.BitwiseNot(mask, mask);//图像取反,白色变黑色
                CvInvoke.Imshow("mask", mask);
                CvInvoke.Threshold(mask, mask, 100, 255, ThresholdType.Binary);
                CvInvoke.Imshow("threshold", mask);
                Mat roi = new Mat(img, new Rectangle(20, 20, logo.Cols, logo.Rows));
                logo.CopyTo(roi, mask);
                CvInvoke.Imshow("img", img);
                CvInvoke.WaitKey(0);
            }

  • 相关阅读:
    vmodel.lazy详解
    import Vue from 'vue'如何解释?
    ubuntu安装deb文件包
    vue安装
    多线程和多进程的区别
    SLH(Location Sensitive Hash)学习
    hadoop学习笔记(一)简介
    [转]关于协同过滤的好文章
    Linear Regression练习
    regularized 线性回归练习
  • 原文地址:https://www.cnblogs.com/noigel/p/10941709.html
Copyright © 2011-2022 走看看