http://poj.org/problem?id=2976
题意:给出有n场考试,给出每场答对的题数a和这场一共有几道题b,求去掉k场考试后,公式.的最大值
解法:假设 r = sigma(ai*xi)/sigma(bi*xi) , 设R为最优解。变形后即有 sigma(ai*xi) - sigma(r*bi*xi) >= 0 . => sigma((ai-r*bi)*xi) >= 0 .
当 sigma((ai-r*bi)*xi) =0 时, 有R = r。 由因为 D[i] = ai-r*bi 为单调递减函数,二分 r 使 sigma((ai-r*bi)*xi) 逼近0 时 , 由最大值R。
求出D数组后从大到小排列,从先前向后取N-K个即可,这时的D一定是最大的.
注意:这题要四舍五入,不能转int向下取整。
//#include<bits/stdc++.h> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <iostream> #include <string> #include <stdio.h> #include <queue> #include <stack> #include <map> #include <set> #include <string.h> #include <vector> typedef long long ll ; #define int ll #define mod 1000000007 #define gcd __gcd #define rep(i , j , n) for(int i = j ; i <= n ; i++) #define red(i , n , j) for(int i = n ; i >= j ; i--) #define ME(x , y) memset(x , y , sizeof(x)) //ll lcm(ll a , ll b){return a*b/gcd(a,b);} //ll quickpow(ll a , ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;b>>=1,a=a*a%mod;}return ans;} //int euler1(int x){int ans=x;for(int i=2;i*i<=x;i++)if(x%i==0){ans-=ans/i;while(x%i==0)x/=i;}if(x>1)ans-=ans/x;return ans;} //const int N = 1e7+9; int vis[n],prime[n],phi[N];int euler2(int n){ME(vis,true);int len=1;rep(i,2,n){if(vis[i]){prime[len++]=i,phi[i]=i-1;}for(int j=1;j<len&&prime[j]*i<=n;j++){vis[i*prime[j]]=0;if(i%prime[j]==0){phi[i*prime[j]]=phi[i]*prime[j];break;}else{phi[i*prime[j]]=phi[i]*phi[prime[j]];}}}return len} #define INF 0x3f3f3f3f #define PI acos(-1) #define pii pair<int,int> #define fi first #define se second #define lson l,mid,root<<1 #define rson mid+1,r,root<<1|1 #define pb push_back #define mp make_pair #define cin(x) scanf("%lld" , &x); using namespace std; const int N = 1e7+9; const int maxn = 1e5+9; const double esp = 1e-2; int n , k ; double a[maxn] , b[maxn] , c[maxn]; bool check(double x){ double ans = 0 ; rep(i , 1 , n){ c[i] = a[i] - x * b[i]; } sort(c + 1 , c + 1 + n); for(int i = n ; i > k ; i--){ ans += c[i]; } if(ans >= 0) return true; else return false; } void solve(){ rep(i , 1 , n){ scanf("%lf" , &a[i]); } rep(i , 1 , n){ scanf("%lf" , &b[i]); } double l = 0 , r = INF; for(int i = 0 ; i < 100 ; i ++){ double mid = (r + l) / 2 ; if(check(mid)){ l = mid ; }else{ r = mid ; } } printf("%.0f " , l*100); } signed main() { //ios::sync_with_stdio(false); //cin.tie(0); cout.tie(0); //int t ; //cin(t); //while(t--){ while(~scanf("%lld%lld" , &n , &k) && (n || k)) solve(); //} }