zoukankan      html  css  js  c++  java
  • spfa(判负环变形)

    题目链接
    题意:n种货币,m种交换、s、v 。边:u、v、r1、c1、r2、c2表示u货币换成v货币需要c1手续费和交换率r1,v换u为c2,r2.(转换公式:val[v] = (val[u]-c1)r1)
    初始有s货币v枚。问能否通过一系列的交换,可以获得比初始更多的钱?
    解法:最短路径的变形。dis初始化为0,如果通过转换可以获得比以前更多的钱,则更新。
    spfa判负环:更新超过n-1次则有负环(入队超过n次)。

    //#include<bits/stdc++.h>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include <iostream>
    #include <string>
    #include <stdio.h>
    #include <queue>
    #include <stack>
    #include <map>
    #include <set>
    #include <string.h>
    #include <vector>
    #include <stdlib.h>
    using namespace std;
    typedef long long ll ;
    #define int ll
    #define mod 100
    #define gcd(m,n) __gcd(m, n)
    #define rep(i , j , n) for(int i = j ; i <= n ; i++)
    #define red(i , n , j)  for(int i = n ; i >= j ; i--)
    #define ME(x , y) memset(x , y , sizeof(x))
    //int lcm(int a , int b){return a*b/gcd(a,b);}
    //ll quickpow(ll a , ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;b>>=1,a=a*a%mod;}return ans;}
    //int euler1(int x){int ans=x;for(int i=2;i*i<=x;i++)if(x%i==0){ans-=ans/i;while(x%i==0)x/=i;}if(x>1)ans-=ans/x;return ans;}
    //const int N = 1e7+9; int vis[n],prime[n],phi[N];int euler2(int n){ME(vis,true);int len=1;rep(i,2,n){if(vis[i]){prime[len++]=i,phi[i]=i-1;}for(int j=1;j<len&&prime[j]*i<=n;j++){vis[i*prime[j]]=0;if(i%prime[j]==0){phi[i*prime[j]]=phi[i]*prime[j];break;}else{phi[i*prime[j]]=phi[i]*phi[prime[j]];}}}return len}
    #define INF  0x3f3f3f3f
    #define PI acos(-1)
    #define pii pair<int,int>
    #define fi first
    #define se second
    #define lson l,mid,root<<1
    #define rson mid+1,r,root<<1|1
    #define pb push_back
    #define mp make_pair
    #define all(v) v.begin(),v.end()
    #define size(v) (int)(v.size())
    #define cin(x) scanf("%lld" , &x);
    const int N = 1e4+9;
    const int maxn = 1e3+9;
    const double esp = 1e-6;
    int head[maxn] , tol ;
    int n , m , s ;
    double v;
    int vis[maxn] , ans[maxn];
    double dis[maxn];
    struct node{
        int to;
        double w , p;
        int next;
    }g[maxn<<1];
    void add(int u , int v , double w , double p){
        g[++tol] = {v , w , p , head[u]};
        head[u] = tol;
    }
    
    bool spfa(int u){
        ME(vis , 0);
        fill(dis , dis+maxn , 0);
        dis[u] = v; vis[u] = 1 ;
        ans[u]++;
        queue<int>q;
        q.push(u);
        while(!q.empty()){
            int a = q.front();q.pop();
            vis[a] = 0 ;
            for(int i = head[a] ; i ; i = g[i].next){
                int to = g[i].to ;
                double w = g[i].w ;
                double p = g[i].p ;
                if((dis[a]-p)*w > dis[to]){
                    dis[to] = (dis[a]-p)*w;
                    if(!vis[to]){
                        vis[to] = 1;
                        q.push(to);
                        ans[to]++;
                        if(ans[to] > n){
                            return false;
                        }
                    }
                }
            }
        }
        return true;
    }
    
    void init(){
        tol = 0 ;
        ME(head, 0);
        ME(ans , 0);
    }
    void solve(){
        init();
        scanf("%lld%lld%lld%lf" , &n , &m , &s , &v);
        rep(i , 1 , m){
            int u , v ;
            double w , p ;
            scanf("%lld%lld%lf%lf" , &u , &v , &w , &p);
            add(u , v , w , p);
            scanf("%lf%lf" , &w , &p);
            add(v , u , w , p);
        }
        if(spfa(s)){
            cout << "NO" << endl;
        }else{
            cout << "YES" << endl;
        }
    }
    
    signed main()
    {
        //ios::sync_with_stdio(false);
    
        solve();
    
    }
    
    
  • 相关阅读:
    android ART hook
    Bind Enum to ListControl
    注意WPF中绑定使用的是引用类型
    Android开发第2篇
    Android开发第1篇
    Extension method for type
    DB2实用命令记录
    TDD三大定律
    【InstallShield】 为什么卸载后有的文件没有删掉
    GAC write failed when upgrade with InstallShield
  • 原文地址:https://www.cnblogs.com/nonames/p/12664046.html
Copyright © 2011-2022 走看看