zoukankan      html  css  js  c++  java
  • Flume学习笔记

    一、Flume简介

      1. Flume提供一个分布式的,可靠的,对大数据量的日志进行高效收集、聚集、移动的服务,Flume只能在Unix环境下运行。
      1. Flume基于流式架构,容错性强,也很灵活简单。
      1. Flume、Kafka用来实时进行数据收集,Spark、Flink用来实时处理数据,impala用来实时查询。

    二、Flume角色

    1、Source

      用于采集数据,Source是产生数据流的地方,同时Source会将产生的数据流传输到Channel,这个有点类似于Java IO部分的Channel。

    2、Channel

      用于桥接Sources和Sinks,类似于一个队列。

    3、Sink

      从Channel收集数据,将数据写到目标源(可以是下一个Source,也可以是HDFS或者HBase)。

    4、Event

      传输单元,Flume数据传输的基本单元,以事件的形式将数据从源头送至目的地。

    三、Flume传输过程

      source监控某个文件或数据流,数据源产生新的数据,拿到该数据后,将数据封装在一个Event中,并put到channel后commit提交,channel队列先进先出,sink去channel队列中拉取数据,然后写入到HDFS中。

    四、Flume部署及使用

    1、文件配置

    • 查询JAVA_HOME: echo $JAVA_HOME
    显示/opt/module/jdk1.8.0_144  /opt/module/jdk1.8.0_144
    
    • 安装Flume
    [itstar@bigdata113 software]$ tar -zxvf apache-flume1.8.0-bin.tar.gz -C /opt/module/
    
    • 改名:
    [itstar@bigdata113 conf]$ mv flume-env.sh.template flume-env.sh
    
    • flume-env.sh涉及修改项:
    export JAVA_HOME=/opt/module/jdk1.8.0_144
    

    2、案例

    2.1、案例一:监控端口数据

      目标:Flume监控一端Console,另一端Console发送消息,使被监控端实时显示。
    分步实现:

      1. 安装telnet工具【联网状态】
    yum -y install telnet
    

      【安装完成】

      1. 创建Flume Agent配置文件flume-telnet.conf
    #1.定义Agent ===> a1
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    #2.定义source
    a1.sources.r1.type = netcat
    a1.sources.r1.bind = bigdata112
    a1.sources.r1.port = 44445
    
    #3.定义sink
    a1.sinks.k1.type = logger
    
    #4.定义channel
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    #5.双向链接
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    
    
      1. 判断44445端口是否被占用
    netstat -tunlp | grep 44445
    
      1. 启动flume配置文件
    /opt/module/flume1.8.0/bin/flume-ng agent 
    --conf /opt/module/flume1.8.0/conf/ 
    --name a1 
    --conf-file /opt/module/flume1.8.0/jobconf/flume-telnet.conf 
    -Dflume.root.logger==INFO,console
    
      1. 使用telnet工具向本机的44444端口发送内容
    telnet bigdata112 44445
    
    2.2、案例二:实时读取本地文件到HDFS
      1. 创建flume-hdfs.conf文件
    # 1.定义agent的名字a2
    a2.sources = r2
    a2.sinks = k2
    a2.channels = c2
    
    #2.定义Source
    a2.sources.r2.type = exec
    a2.sources.r2.command = tail -F /opt/Andy
    a2.sources.r2.shell = /bin/bash -c
    
    #3.定义sink
    a2.sinks.k2.type = hdfs
    a2.sinks.k2.hdfs.path = hdfs://bigdata111:9000/flume/%H
    #上传文件的前缀
    a2.sinks.k2.hdfs.filePrefix = Andy-
    #是否按照时间滚动文件夹
    a2.sinks.k2.hdfs.round = true
    #多少时间单位创建一个新的文件夹
    a2.sinks.k2.hdfs.roundValue = 1
    #重新定义时间单位
    a2.sinks.k2.hdfs.roundUnit = hour
    #是否使用本地时间戳
    a2.sinks.k2.hdfs.useLocalTimeStamp = true
    #积攒多少个Event才flush到HDFS一次
    a2.sinks.k2.hdfs.batchSize = 1000
    #设置文件类型,可支持压缩
    a2.sinks.k2.hdfs.fileType = DataStream
    #多久生成一个新的文件
    a2.sinks.k2.hdfs.rollInterval = 600
    #设置每个文件的滚动大小
    a2.sinks.k2.hdfs.rollSize = 134217700
    #文件的滚动与Event数量无关
    a2.sinks.k2.hdfs.rollCount = 0
    #最小副本数
    a2.sinks.k2.hdfs.minBlockReplicas = 1
    
    # 4.定义Channel 
    a2.channels.c2.type = memory
    a2.channels.c2.capacity = 1000
    a2.channels.c2.transactionCapacity = 100
    
    # 5.链接
    a2.sources.r2.channels = c2
    a2.sinks.k2.channel = c2
    
      1. 执行监控配置
    /opt/module/flume1.8.0/bin/flume-ng agent 
    --conf /opt/module/flume1.8.0/conf/ 
    --name a2 
    --conf-file /opt/module/flume1.8.0/jobconf/flume-hdfs.conf
    
    2.3、案例三:实时读取目录文件到HDFS

      目标:使用flume监听整个目录的文件

      1. 创建配置文件flume-dir.conf
    #1.定义Agent a3
    a3.sources = r3
    a3.sinks = k3
    a3.channels = c3
    
    # 2.定义Source
    a3.sources.r3.type = spooldir
    a3.sources.r3.spoolDir = /opt/module/flume1.8.0/upload
    a3.sources.r3.fileSuffix = .COMPLETED
    a3.sources.r3.fileHeader = true
    #忽略所有以.tmp结尾的文件,不上传
    a3.sources.r3.ignorePattern = ([^ ]*.tmp)
    
    # 3.Sink
    a3.sinks.k3.type = hdfs
    a3.sinks.k3.hdfs.path = hdfs://bigdata111:9000/flume/%H
    #上传文件的前缀
    a3.sinks.k3.hdfs.filePrefix = upload-
    #是否按照时间滚动文件夹
    a3.sinks.k3.hdfs.round = true
    #多少时间单位创建一个新的文件夹
    a3.sinks.k3.hdfs.roundValue = 1
    #重新定义时间单位
    a3.sinks.k3.hdfs.roundUnit = hour
    #是否使用本地时间戳
    a3.sinks.k3.hdfs.useLocalTimeStamp = true
    #积攒多少个Event才flush到HDFS一次
    a3.sinks.k3.hdfs.batchSize = 100
    #设置文件类型,可支持压缩
    a3.sinks.k3.hdfs.fileType = DataStream
    #多久生成一个新的文件
    a3.sinks.k3.hdfs.rollInterval = 600
    #设置每个文件的滚动大小大概是128M
    a3.sinks.k3.hdfs.rollSize = 134217728
    #文件的滚动与Event数量无关
    a3.sinks.k3.hdfs.rollCount = 0
    #最小副本数
    a3.sinks.k3.hdfs.minBlockReplicas = 1
    
    #4.定义Channel
    a3.channels.c3.type = memory
    a3.channels.c3.capacity = 1000
    a3.channels.c3.transactionCapacity = 100
    
    #5.链接
    a3.sources.r3.channels = c3
    a3.sinks.k3.channel = c3
    
      1. 执行测试:执行如下脚本后,请向upload文件夹中添加文件试试
    /opt/module/flume1.8.0/bin/flume-ng agent 
    --conf /opt/module/flume1.8.0/conf/ 
    --name a3 
    --conf-file /opt/module/flume1.8.0/jobconf/flume-dir.conf
    

    尖叫提示: 在使用Spooling Directory Source时
      1) 不要在监控目录中创建并持续修改文件
      2) 上传完成的文件会以.COMPLETED结尾
      3) 被监控文件夹每500毫秒扫描一次文件变动

    2.4、案例四:Flume与Flume之间数据传递:单Flume多Channel、Sink

      目标:使用flume1监控文件变动,flume1将变动内容传递给flume-2,flume-2负责存储到HDFS。同时flume1将变动内容传递给flume-3,flume-3负责输出到local

      1. 创建flume1.conf,用于监控某文件的变动,同时产生两个channel和两个sink分别输送给flume-2和flume3:
    # Name the components on this agent
    a1.sources = r1
    a1.sinks = k1 k2
    a1.channels = c1 c2
    # 将数据流复制给多个channel
    a1.sources.r1.selector.type = replicating
    
    # Describe/configure the source
    a1.sources.r1.type = exec
    a1.sources.r1.command = tail -F /opt/Andy
    a1.sources.r1.shell = /bin/bash -c
    
    # Describe the sink
    a1.sinks.k1.type = avro
    a1.sinks.k1.hostname = bigdata111
    a1.sinks.k1.port = 4141
    
    a1.sinks.k2.type = avro
    a1.sinks.k2.hostname = bigdata111
    a1.sinks.k2.port = 4142
    
    # Describe the channel
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    a1.channels.c2.type = memory
    a1.channels.c2.capacity = 1000
    a1.channels.c2.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a1.sources.r1.channels = c1 c2
    a1.sinks.k1.channel = c1
    a1.sinks.k2.channel = c2
    
      1. 创建flume-2.conf,用于接收flume1的event,同时产生1个channel和1个sink,将数据输送给hdfs:
    # Name the components on this agent
    a2.sources = r1
    a2.sinks = k1
    a2.channels = c1
    
    # Describe/configure the source
    a2.sources.r1.type = avro
    a2.sources.r1.bind = bigdata111
    a2.sources.r1.port = 4141
    
    # Describe the sink
    a2.sinks.k1.type = hdfs
    a2.sinks.k1.hdfs.path = hdfs://bigdata111:9000/flume2/%H
    #上传文件的前缀
    a2.sinks.k1.hdfs.filePrefix = flume2-
    #是否按照时间滚动文件夹
    a2.sinks.k1.hdfs.round = true
    #多少时间单位创建一个新的文件夹
    a2.sinks.k1.hdfs.roundValue = 1
    #重新定义时间单位
    a2.sinks.k1.hdfs.roundUnit = hour
    #是否使用本地时间戳
    a2.sinks.k1.hdfs.useLocalTimeStamp = true
    #积攒多少个Event才flush到HDFS一次
    a2.sinks.k1.hdfs.batchSize = 100
    #设置文件类型,可支持压缩
    a2.sinks.k1.hdfs.fileType = DataStream
    #多久生成一个新的文件
    a2.sinks.k1.hdfs.rollInterval = 600
    #设置每个文件的滚动大小大概是128M
    a2.sinks.k1.hdfs.rollSize = 134217700
    #文件的滚动与Event数量无关
    a2.sinks.k1.hdfs.rollCount = 0
    #最小副本数
    a2.sinks.k1.hdfs.minBlockReplicas = 1
    
    
    # Describe the channel
    a2.channels.c1.type = memory
    a2.channels.c1.capacity = 1000
    a2.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a2.sources.r1.channels = c1
    a2.sinks.k1.channel = c1
    
      1. 创建flume-3.conf,用于接收flume1的event,同时产生1个channel和1个sink,将数据输送给本地目录:
    # Name the components on this agent
    a3.sources = r1
    a3.sinks = k1
    a3.channels = c1
    
    # Describe/configure the source
    a3.sources.r1.type = avro
    a3.sources.r1.bind = bigdata111
    a3.sources.r1.port = 4142
    
    # Describe the sink
    a3.sinks.k1.type = file_roll
    #备注:此处的文件夹需要先创建好
    a3.sinks.k1.sink.directory = /opt/flume3
    
    # Describe the channel
    a3.channels.c1.type = memory
    a3.channels.c1.capacity = 1000
    a3.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a3.sources.r1.channels = c1
    a3.sinks.k1.channel = c1
    

    尖叫提示:输出的本地目录必须是已经存在的目录,如果该目录不存在,并不会创建新的目录。

      1. 执行测试:分别开启对应flume-job(依次启动flume1,flume-2,flume-3),同时产生文件变动并观察结果:
    $ bin/flume-ng agent --conf conf/ --name a1 --conf-file jobconf/flume1.conf
    
    $ bin/flume-ng agent --conf conf/ --name a2 --conf-file jobconf/flume2.conf
    
    $ bin/flume-ng agent --conf conf/ --name a3 --conf-file jobconf/flume3.conf
    
    2.5、案例五:Flume与Flume之间数据传递,多Flume汇总数据到单Flume

      目标:flume11监控文件hive.log,flume-22监控某一个端口的数据流,flume11与flume-22将数据发送给flume-33,flume33将最终数据写入到HDFS。

      1. 创建flume11.conf,用于监控hive.log文件,同时sink数据到flume-33:
    # Name the components on this agent
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    # Describe/configure the source
    a1.sources.r1.type = exec
    a1.sources.r1.command = tail -F /opt/Andy
    a1.sources.r1.shell = /bin/bash -c
    
    # Describe the sink
    a1.sinks.k1.type = avro
    a1.sinks.k1.hostname = bigdata111
    a1.sinks.k1.port = 4141
    
    # Describe the channel
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    
      1. 创建flume-22.conf,用于监控端口44444数据流,同时sink数据到flume-33:
    # Name the components on this agent
    a2.sources = r1
    a2.sinks = k1
    a2.channels = c1
    
    # Describe/configure the source
    a2.sources.r1.type = netcat
    a2.sources.r1.bind = bigdata111
    a2.sources.r1.port = 44444
    
    # Describe the sink
    a2.sinks.k1.type = avro
    a2.sinks.k1.hostname = bigdata111
    a2.sinks.k1.port = 4141
    
    # Use a channel which buffers events in memory
    a2.channels.c1.type = memory
    a2.channels.c1.capacity = 1000
    a2.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a2.sources.r1.channels = c1
    a2.sinks.k1.channel = c1
    
      1. 创建flume-33.conf,用于接收flume11与flume-22发送过来的数据流,最终合并后sink到HDFS:
    # Name the components on this agent
    a3.sources = r1
    a3.sinks = k1
    a3.channels = c1
    
    # Describe/configure the source
    a3.sources.r1.type = avro
    a3.sources.r1.bind = bigdata111
    a3.sources.r1.port = 4141
    
    # Describe the sink
    a3.sinks.k1.type = hdfs
    a3.sinks.k1.hdfs.path = hdfs://bigdata111:9000/flume3/%H
    #上传文件的前缀
    a3.sinks.k1.hdfs.filePrefix = flume3-
    #是否按照时间滚动文件夹
    a3.sinks.k1.hdfs.round = true
    #多少时间单位创建一个新的文件夹
    a3.sinks.k1.hdfs.roundValue = 1
    #重新定义时间单位
    a3.sinks.k1.hdfs.roundUnit = hour
    #是否使用本地时间戳
    a3.sinks.k1.hdfs.useLocalTimeStamp = true
    #积攒多少个Event才flush到HDFS一次
    a3.sinks.k1.hdfs.batchSize = 100
    #设置文件类型,可支持压缩
    a3.sinks.k1.hdfs.fileType = DataStream
    #多久生成一个新的文件
    a3.sinks.k1.hdfs.rollInterval = 600
    #设置每个文件的滚动大小大概是128M
    a3.sinks.k1.hdfs.rollSize = 134217700
    #文件的滚动与Event数量无关
    a3.sinks.k1.hdfs.rollCount = 0
    #最小冗余数
    a3.sinks.k1.hdfs.minBlockReplicas = 1
    
    # Describe the channel
    a3.channels.c1.type = memory
    a3.channels.c1.capacity = 1000
    a3.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a3.sources.r1.channels = c1
    a3.sinks.k1.channel = c1
    
      1. 执行测试:分别开启对应flume-job(依次启动flume-33,flume-22,flume11),同时产生文件变动并观察结果:
    $ bin/flume-ng agent --conf conf/ --name a3 --conf-file jobconf/flume33.conf
    $ bin/flume-ng agent --conf conf/ --name a2 --conf-file jobconf/flume22.conf
    $ bin/flume-ng agent --conf conf/ --name a1 --conf-file jobconf/flume11.conf
    
    • 数据发送
    a)telnet bigdata111 44444    打开后发送5555555
    在/opt/Andy 中追加666666
    
    2.6、案例五:Flume自定义拦截器
    • 时间戳拦截器,Timestamp.conf
    #定义agent名, source、channel、sink的名称
    a4.sources = r1
    a4.channels = c1
    a4.sinks = k1
    
    #具体定义source
    a4.sources.r1.type = spooldir
    a4.sources.r1.spoolDir = /opt/module/flume-1.8.0/upload
    
    #具体定义channel
    a4.channels.c1.type = memory
    a4.channels.c1.capacity = 10000
    a4.channels.c1.transactionCapacity = 100
    
    #定义拦截器,为文件最后添加时间戳
    a4.sources.r1.interceptors = i1
    a4.sources.r1.interceptors.i1.type = org.apache.flume.interceptor.TimestampInterceptor$Builder
    
    #具体定义sink
    a4.sinks.k1.type = hdfs
    a4.sinks.k1.hdfs.path = hdfs://bigdata111:9000/flume-interceptors/%H
    a4.sinks.k1.hdfs.filePrefix = events-
    a4.sinks.k1.hdfs.fileType = DataStream
    
    #不按照条数生成文件
    a4.sinks.k1.hdfs.rollCount = 0
    #HDFS上的文件达到128M时生成一个文件
    a4.sinks.k1.hdfs.rollSize = 134217728
    #HDFS上的文件达到60秒生成一个文件
    a4.sinks.k1.hdfs.rollInterval = 60
    
    #组装source、channel、sink
    a4.sources.r1.channels = c1
    a4.sinks.k1.channel = c1
    

    启动命令

    /opt/module/flume-1.8.0/bin/flume-ng agent -n a4 
    -f /opt/module/flume-1.8.0/jobconf/flume-interceptors.conf 
    -c /opt/module/flume-1.8.0/conf 
    -Dflume.root.logger=INFO,console
    
    • 主机名拦截器,Host.conf
    a1.sources= r1
    a1.sinks = k1
    a1.channels = c1
     
    a1.sources.r1.type = exec
    a1.sources.r1.channels = c1
    a1.sources.r1.command = tail -F /opt/Andy
    a1.sources.r1.interceptors = i1
    a1.sources.r1.interceptors.i1.type = host
    
    #参数为true时用IP192.168.1.111,参数为false时用主机名,默认为true
    a1.sources.r1.interceptors.i1.useIP = false
    a1.sources.r1.interceptors.i1.hostHeader = agentHost
     
    a1.sinks.k1.type=hdfs
    a1.sinks.k1.channel = c1
    a1.sinks.k1.hdfs.path = hdfs://bigdata111:9000/flumehost/%H
    a1.sinks.k1.hdfs.filePrefix = Andy_%{agentHost}
    #往生成的文件加后缀名.log
    a1.sinks.k1.hdfs.fileSuffix = .log
    a1.sinks.k1.hdfs.fileType = DataStream
    a1.sinks.k1.hdfs.writeFormat = Text
    a1.sinks.k1.hdfs.rollInterval = 10
    a1.sinks.k1.hdfs.useLocalTimeStamp = true
     
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
     
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    

    启动命令:

    bin/flume-ng agent -c conf/ -f jobconf/host.conf -n a1 -Dflume.root.logger=INFO,console
    
    • UUID拦截器,uuid.conf
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    a1.sources.r1.type = exec
    a1.sources.r1.channels = c1
    a1.sources.r1.command = tail -F /opt/Andy
    a1.sources.r1.interceptors = i1
    #type的参数不能写成uuid,得写具体,否则找不到类
    a1.sources.r1.interceptors.i1.type = org.apache.flume.sink.solr.morphline.UUIDInterceptor$Builder
    #如果UUID头已经存在,它应该保存
    a1.sources.r1.interceptors.i1.preserveExisting = true
    a1.sources.r1.interceptors.i1.prefix = UUID_
    
    a1.sinks.k1.type = logger
    
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    # bin/flume-ng agent -c conf/ -f jobconf/uuid.conf -n a1 -Dflume.root.logger==INFO,console
    
    • 查询替换拦截器,search.conf
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    a1.sources.r1.type = exec
    a1.sources.r1.channels = c1
    a1.sources.r1.command = tail -F /opt/Andy
    a1.sources.r1.interceptors = i1
    a1.sources.r1.interceptors.i1.type = search_replace
    a1.sources.r1.interceptors.i1.searchPattern = [0-9]+
    a1.sources.r1.interceptors.i1.replaceString = itstar
    a1.sources.r1.interceptors.i1.charset = UTF-8
    
    a1.sinks.k1.type = logger
    
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    # bin/flume-ng agent -c conf/ -f jobconf/search.conf -n a1 -Dflume.root.logger=INFO,console
    
    • 正则过滤拦截器,filter.conf
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    a1.sources.r1.type = exec
    a1.sources.r1.channels = c1
    a1.sources.r1.command = tail -F /opt/Andy
    a1.sources.r1.interceptors = i1
    a1.sources.r1.interceptors.i1.type = regex_filter
    a1.sources.r1.interceptors.i1.regex = ^A.*
    #如果excludeEvents设为false,表示过滤掉不是以A开头的events。如果excludeEvents设为true,则表示过滤掉以A开头的events。
    a1.sources.r1.interceptors.i1.excludeEvents = true
    
    a1.sinks.k1.type = logger
    
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    # bin/flume-ng agent -c conf/ -f jobconf/filter.conf -n a1 -Dflume.root.logger=INFO,console
    
    • 正则抽取拦截器,extractor.conf
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    a1.sources.r1.type = exec
    a1.sources.r1.channels = c1
    a1.sources.r1.command = tail -F /opt/Andy
    a1.sources.r1.interceptors = i1
    a1.sources.r1.interceptors.i1.type = regex_extractor
    a1.sources.r1.interceptors.i1.regex = hostname is (.*?) ip is (.*)
    a1.sources.r1.interceptors.i1.serializers = s1 s2
    a1.sources.r1.interceptors.i1.serializers.s1.name = cookieid
    a1.sources.r1.interceptors.i1.serializers.s2.name = ip
    
    a1.sinks.k1.type = logger
    
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    # bin/flume-ng agent -c conf/ -f jobconf/extractor.conf -n a1 -Dflume.root.logger=INFO,console
    
    作者:落花桂
             
    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。
  • 相关阅读:
    python 打印出水仙花数
    pycharm 2020 激活码 破解教程
    Python 封装一个函数,查找文字字符串数字英文下标
    Python 分解质因数
    python 封装一个取符串长度的函数
    Python 正整数相加其余忽略
    Python 输入字符串找(String)下标 没有返回-1
    CPU 和 GPU 的区别
    Deferred Shading,延迟渲染(提高渲染效率,减少多余光照计算)【转】
    BumpMap、NormalMap的区别
  • 原文地址:https://www.cnblogs.com/nthforsth/p/14402614.html
Copyright © 2011-2022 走看看