zoukankan      html  css  js  c++  java
  • Smallest Bounding Rectangle(最小面积外接矩形)

    Given the Cartesian coordinates of n (> 0) 2-dimensional points, write a program that computes the area of their smallest bounding rectangle (smallest rectangle containing all the given points).

    Input

    The input file may contain multiple test cases. Each test case begins with a line containing a positive integer n (< 1001) indicating the number of points in this test case. Then follows n lines each containing two real numbers giving respectively the x- and y-coordinates of a point. The input terminates with a test case containing a value 0 for n which must not be processed.  

    Output

    For each test case in the input print a line containing the area of the smallest bounding rectangle rounded to the 4th digit after the decimal point.

    Sample Input

    3
    -3.000 5.000
    7.000 9.000
    17.000 5.000
    4
    10.000 10.000
    10.000 20.000
    20.000 20.000
    20.000 10.000

    Sample Output

    80.0000
    100.0000

    #include<bits/stdc++.h>//最小面积外接矩形
    
    #define ll long long
    const int N = 50007;
    using namespace std;
    int n, top;
    double ans;
    #define eps 1e-8
    
    int dcmp(double x) { return fabs(x) < eps ? 0 : (x > 0 ? 1 : -1); }
    
    struct pt {
        double x, y;
    
        pt() {}
    
        pt(double x, double y) : x(x), y(y) {}
    
        friend bool operator<(const pt &A, const pt &B) {
            return A.x < B.x || (A.x == B.x && A.y < B.y);
        }
    } p[N], ham[N];
    
    pt operator-(const pt &A, const pt &B) { return pt(A.x - B.x, A.y - B.y); }
    
    double dot(const pt &A, const pt &B) { return A.x * B.x + A.y * B.y; }
    
    double cross(const pt &A, const pt &B) { return A.x * B.y - A.y * B.x; }
    
    double lenth(const pt &A) { return sqrt(dot(A, A)); }
    
    double node_to_line(pt C, pt A, pt B) {
        return fabs(cross(C - A, B - A)) / lenth(A - B);
    }
    
    bool cmp(const pt &A, const pt &B) {
        return dcmp(cross(A - p[1], B - p[1])) < 0 ||
               (dcmp(cross(A - p[1], B - p[1])) == 0 && dcmp(lenth(A - p[1]) - lenth(B - p[1])) < 0);
    }
    
    void get_ham(int n) {
        for (int i = 2; i <= n; i++)
            if (p[i] < p[1]) swap(p[i], p[1]);
        sort(p + 2, p + n + 1, cmp);
        top = 0;
        ham[top++] = p[1];
        for (int i = 2; i <= n; i++) {
            while (top >= 2 && dcmp(cross(p[i] - ham[top - 2], ham[top - 1] - ham[top - 2])) <= 0) top--;
            ham[top++] = p[i];
        }
    }
    
    void RC(int top) {
        ham[top] = ham[0];
        int j = 1, k = 1, l = 1;
        for (int i = 0; i < top; i++) {
            while (dcmp(cross(ham[j % top] - ham[i], ham[i + 1] - ham[i]) -
                        cross(ham[(j + 1) % top] - ham[i], ham[i + 1] - ham[i])) < 0)
                j++;
            k = max(k, i + 1);
            l = max(l, j);
            while (dcmp(dot(ham[k % top] - ham[i + 1], ham[i] - ham[i + 1]) -
                        dot(ham[(k + 1) % top] - ham[i + 1], ham[i] - ham[i + 1])) > 0)
                k++;
            while (dcmp(dot(ham[l % top] - ham[i], ham[i + 1] - ham[i]) -
                        dot(ham[(l + 1) % top] - ham[i], ham[i + 1] - ham[i])) > 0)
                l++;
            double d = lenth(ham[i + 1] - ham[i]);
            double L = fabs(dot(ham[k % top] - ham[i + 1], ham[i] - ham[i + 1])) / d +
                       fabs(dot(ham[l % top] - ham[i], ham[i + 1] - ham[i])) / d + d;
            double D = node_to_line(ham[j % top], ham[i], ham[i + 1]);
            ans = min(ans, L * D);
        }
        if (top < 3) ans = 0;
    }
    
    int main() {
        ios::sync_with_stdio(false);
        cin.tie(0);
        while (cin >> n && n) {
            for (int i = 1; i <= n; i++)cin >> p[i].x >> p[i].y;
            get_ham(n);
            ans = 1e9;
            RC(top);
            cout << fixed << setprecision(4) << ans << endl;
        }
        return 0;
    }
  • 相关阅读:
    CFree 提示main must return int
    策略模式
    CFree 提示no newline at the end of file
    EEPROM的写入操作解析
    一些关于mic的知识
    一些关于电池的资料
    太阳能电池板日发电量简易计算方法
    ubuntu 下载编译android源代码
    SC44B0的内存地址解析
    RequireJS 2.0 学习笔记一
  • 原文地址:https://www.cnblogs.com/nublity/p/11755517.html
Copyright © 2011-2022 走看看