zoukankan      html  css  js  c++  java
  • Smallest Bounding Rectangle(最小面积外接矩形)

    Given the Cartesian coordinates of n (> 0) 2-dimensional points, write a program that computes the area of their smallest bounding rectangle (smallest rectangle containing all the given points).

    Input

    The input file may contain multiple test cases. Each test case begins with a line containing a positive integer n (< 1001) indicating the number of points in this test case. Then follows n lines each containing two real numbers giving respectively the x- and y-coordinates of a point. The input terminates with a test case containing a value 0 for n which must not be processed.  

    Output

    For each test case in the input print a line containing the area of the smallest bounding rectangle rounded to the 4th digit after the decimal point.

    Sample Input

    3
    -3.000 5.000
    7.000 9.000
    17.000 5.000
    4
    10.000 10.000
    10.000 20.000
    20.000 20.000
    20.000 10.000

    Sample Output

    80.0000
    100.0000

    #include<bits/stdc++.h>//最小面积外接矩形
    
    #define ll long long
    const int N = 50007;
    using namespace std;
    int n, top;
    double ans;
    #define eps 1e-8
    
    int dcmp(double x) { return fabs(x) < eps ? 0 : (x > 0 ? 1 : -1); }
    
    struct pt {
        double x, y;
    
        pt() {}
    
        pt(double x, double y) : x(x), y(y) {}
    
        friend bool operator<(const pt &A, const pt &B) {
            return A.x < B.x || (A.x == B.x && A.y < B.y);
        }
    } p[N], ham[N];
    
    pt operator-(const pt &A, const pt &B) { return pt(A.x - B.x, A.y - B.y); }
    
    double dot(const pt &A, const pt &B) { return A.x * B.x + A.y * B.y; }
    
    double cross(const pt &A, const pt &B) { return A.x * B.y - A.y * B.x; }
    
    double lenth(const pt &A) { return sqrt(dot(A, A)); }
    
    double node_to_line(pt C, pt A, pt B) {
        return fabs(cross(C - A, B - A)) / lenth(A - B);
    }
    
    bool cmp(const pt &A, const pt &B) {
        return dcmp(cross(A - p[1], B - p[1])) < 0 ||
               (dcmp(cross(A - p[1], B - p[1])) == 0 && dcmp(lenth(A - p[1]) - lenth(B - p[1])) < 0);
    }
    
    void get_ham(int n) {
        for (int i = 2; i <= n; i++)
            if (p[i] < p[1]) swap(p[i], p[1]);
        sort(p + 2, p + n + 1, cmp);
        top = 0;
        ham[top++] = p[1];
        for (int i = 2; i <= n; i++) {
            while (top >= 2 && dcmp(cross(p[i] - ham[top - 2], ham[top - 1] - ham[top - 2])) <= 0) top--;
            ham[top++] = p[i];
        }
    }
    
    void RC(int top) {
        ham[top] = ham[0];
        int j = 1, k = 1, l = 1;
        for (int i = 0; i < top; i++) {
            while (dcmp(cross(ham[j % top] - ham[i], ham[i + 1] - ham[i]) -
                        cross(ham[(j + 1) % top] - ham[i], ham[i + 1] - ham[i])) < 0)
                j++;
            k = max(k, i + 1);
            l = max(l, j);
            while (dcmp(dot(ham[k % top] - ham[i + 1], ham[i] - ham[i + 1]) -
                        dot(ham[(k + 1) % top] - ham[i + 1], ham[i] - ham[i + 1])) > 0)
                k++;
            while (dcmp(dot(ham[l % top] - ham[i], ham[i + 1] - ham[i]) -
                        dot(ham[(l + 1) % top] - ham[i], ham[i + 1] - ham[i])) > 0)
                l++;
            double d = lenth(ham[i + 1] - ham[i]);
            double L = fabs(dot(ham[k % top] - ham[i + 1], ham[i] - ham[i + 1])) / d +
                       fabs(dot(ham[l % top] - ham[i], ham[i + 1] - ham[i])) / d + d;
            double D = node_to_line(ham[j % top], ham[i], ham[i + 1]);
            ans = min(ans, L * D);
        }
        if (top < 3) ans = 0;
    }
    
    int main() {
        ios::sync_with_stdio(false);
        cin.tie(0);
        while (cin >> n && n) {
            for (int i = 1; i <= n; i++)cin >> p[i].x >> p[i].y;
            get_ham(n);
            ans = 1e9;
            RC(top);
            cout << fixed << setprecision(4) << ans << endl;
        }
        return 0;
    }
  • 相关阅读:
    无线安全
    下载安装Emacs和基本配置--待更新中
    uv-pv-vv的区别
    tesseract安装及问题处理
    POJ 2187 Beauty Contest【凸包周长】
    POJ 1113 Wall【凸包周长】
    POJ 2187 Beauty Contest【旋转卡壳求凸包直径】
    POJ 2031 Building a Space Station【经典最小生成树】
    URAL 1181 Cutting a Painted Polygon【递归+分治】
    POJ 1845-Sumdiv【经典数学题目---求因子和】
  • 原文地址:https://www.cnblogs.com/nublity/p/11755517.html
Copyright © 2011-2022 走看看